Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import cv2
|
2 |
-
import gradio as gr
|
3 |
import os
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
@@ -7,147 +6,131 @@ import torch
|
|
7 |
from torch.autograd import Variable
|
8 |
from torchvision import transforms
|
9 |
import torch.nn.functional as F
|
10 |
-
import
|
11 |
-
import
|
|
|
12 |
import warnings
|
13 |
warnings.filterwarnings("ignore")
|
14 |
|
15 |
-
|
16 |
-
os.system("mv DIS/IS-Net/* .")
|
17 |
-
|
18 |
-
# project imports
|
19 |
-
from data_loader_cache import normalize, im_reader, im_preprocess
|
20 |
-
from models import *
|
21 |
-
|
22 |
-
#Helpers
|
23 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
24 |
|
25 |
-
# Download official weights
|
26 |
-
if not os.path.exists("saved_models"):
|
27 |
-
os.mkdir("saved_models")
|
28 |
-
os.system("mv isnet.pth saved_models/")
|
29 |
-
|
30 |
class GOSNormalize(object):
|
31 |
-
'''
|
32 |
-
Normalize the Image using torch.transforms
|
33 |
-
'''
|
34 |
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
|
35 |
self.mean = mean
|
36 |
self.std = std
|
37 |
|
38 |
-
def __call__(self,image):
|
39 |
-
image = normalize(image,self.mean,self.std)
|
40 |
return image
|
41 |
|
42 |
-
|
43 |
-
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])
|
44 |
|
45 |
def load_image(im_path, hypar):
|
46 |
im = im_reader(im_path)
|
47 |
im, im_shp = im_preprocess(im, hypar["cache_size"])
|
48 |
-
im = torch.divide(im,255.0)
|
49 |
shape = torch.from_numpy(np.array(im_shp))
|
50 |
-
return transform(im).unsqueeze(0), shape.unsqueeze(0)
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
net = hypar["model"]#GOSNETINC(3,1)
|
55 |
-
|
56 |
-
# convert to half precision
|
57 |
if(hypar["model_digit"]=="half"):
|
58 |
net.half()
|
59 |
for layer in net.modules():
|
60 |
if isinstance(layer, nn.BatchNorm2d):
|
61 |
layer.float()
|
62 |
-
|
63 |
net.to(device)
|
64 |
-
|
65 |
if(hypar["restore_model"]!=""):
|
66 |
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
|
67 |
net.to(device)
|
68 |
net.eval()
|
69 |
return net
|
70 |
|
71 |
-
|
72 |
-
def predict(net, inputs_val, shapes_val, hypar, device):
|
73 |
-
'''
|
74 |
-
Given an Image, predict the mask
|
75 |
-
'''
|
76 |
net.eval()
|
77 |
-
|
78 |
if(hypar["model_digit"]=="full"):
|
79 |
inputs_val = inputs_val.type(torch.FloatTensor)
|
80 |
else:
|
81 |
inputs_val = inputs_val.type(torch.HalfTensor)
|
82 |
-
|
83 |
|
84 |
-
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
pred_val = ds_val[0][0,:,:,:] # B x 1 x H x W # we want the first one which is the most accurate prediction
|
89 |
|
90 |
-
## recover the prediction spatial size to the orignal image size
|
91 |
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))
|
92 |
|
93 |
ma = torch.max(pred_val)
|
94 |
mi = torch.min(pred_val)
|
95 |
-
pred_val = (pred_val-mi)/(ma-mi)
|
96 |
|
97 |
if device == 'cuda': torch.cuda.empty_cache()
|
98 |
-
return (pred_val.detach().cpu().numpy()*255).astype(np.uint8)
|
99 |
-
|
100 |
-
#
|
101 |
-
hypar = {
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
## data augmentation parameters ---
|
115 |
-
hypar["input_size"] = [1024, 1024] ## mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images
|
116 |
-
hypar["crop_size"] = [1024, 1024] ## random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation
|
117 |
-
|
118 |
-
hypar["model"] = ISNetDIS()
|
119 |
-
|
120 |
-
# Build Model
|
121 |
net = build_model(hypar, device)
|
122 |
|
|
|
|
|
|
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import cv2
|
|
|
2 |
import os
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
|
|
6 |
from torch.autograd import Variable
|
7 |
from torchvision import transforms
|
8 |
import torch.nn.functional as F
|
9 |
+
from flask import Flask, request, jsonify, send_file
|
10 |
+
import io
|
11 |
+
from werkzeug.utils import secure_filename
|
12 |
import warnings
|
13 |
warnings.filterwarnings("ignore")
|
14 |
|
15 |
+
# モデルと設定の初期化
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
17 |
|
|
|
|
|
|
|
|
|
|
|
18 |
class GOSNormalize(object):
|
|
|
|
|
|
|
19 |
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
|
20 |
self.mean = mean
|
21 |
self.std = std
|
22 |
|
23 |
+
def __call__(self, image):
|
24 |
+
image = normalize(image, self.mean, self.std)
|
25 |
return image
|
26 |
|
27 |
+
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])
|
|
|
28 |
|
29 |
def load_image(im_path, hypar):
|
30 |
im = im_reader(im_path)
|
31 |
im, im_shp = im_preprocess(im, hypar["cache_size"])
|
32 |
+
im = torch.divide(im, 255.0)
|
33 |
shape = torch.from_numpy(np.array(im_shp))
|
34 |
+
return transform(im).unsqueeze(0), shape.unsqueeze(0)
|
35 |
|
36 |
+
def build_model(hypar, device):
|
37 |
+
net = hypar["model"]
|
|
|
|
|
|
|
38 |
if(hypar["model_digit"]=="half"):
|
39 |
net.half()
|
40 |
for layer in net.modules():
|
41 |
if isinstance(layer, nn.BatchNorm2d):
|
42 |
layer.float()
|
|
|
43 |
net.to(device)
|
|
|
44 |
if(hypar["restore_model"]!=""):
|
45 |
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
|
46 |
net.to(device)
|
47 |
net.eval()
|
48 |
return net
|
49 |
|
50 |
+
def predict(net, inputs_val, shapes_val, hypar, device):
|
|
|
|
|
|
|
|
|
51 |
net.eval()
|
|
|
52 |
if(hypar["model_digit"]=="full"):
|
53 |
inputs_val = inputs_val.type(torch.FloatTensor)
|
54 |
else:
|
55 |
inputs_val = inputs_val.type(torch.HalfTensor)
|
|
|
56 |
|
57 |
+
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
|
58 |
+
ds_val = net(inputs_val_v)[0]
|
59 |
+
pred_val = ds_val[0][0,:,:,:]
|
|
|
|
|
60 |
|
|
|
61 |
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))
|
62 |
|
63 |
ma = torch.max(pred_val)
|
64 |
mi = torch.min(pred_val)
|
65 |
+
pred_val = (pred_val-mi)/(ma-mi)
|
66 |
|
67 |
if device == 'cuda': torch.cuda.empty_cache()
|
68 |
+
return (pred_val.detach().cpu().numpy()*255).astype(np.uint8)
|
69 |
+
|
70 |
+
# パラメータ設定
|
71 |
+
hypar = {
|
72 |
+
"model_path": "./saved_models",
|
73 |
+
"restore_model": "isnet.pth",
|
74 |
+
"interm_sup": False,
|
75 |
+
"model_digit": "full",
|
76 |
+
"seed": 0,
|
77 |
+
"cache_size": [1024, 1024],
|
78 |
+
"input_size": [1024, 1024],
|
79 |
+
"crop_size": [1024, 1024],
|
80 |
+
"model": ISNetDIS()
|
81 |
+
}
|
82 |
+
|
83 |
+
# モデルをビルド
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
net = build_model(hypar, device)
|
85 |
|
86 |
+
app = Flask(__name__)
|
87 |
+
app.config['UPLOAD_FOLDER'] = 'uploads'
|
88 |
+
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
|
89 |
|
90 |
+
@app.route('/api/remove-background', methods=['POST'])
|
91 |
+
def remove_background():
|
92 |
+
if 'file' not in request.files:
|
93 |
+
return jsonify({"error": "No file provided"}), 400
|
94 |
+
|
95 |
+
file = request.files['file']
|
96 |
+
if file.filename == '':
|
97 |
+
return jsonify({"error": "No selected file"}), 400
|
98 |
+
|
99 |
+
# ファイルを保存
|
100 |
+
filename = secure_filename(file.filename)
|
101 |
+
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
|
102 |
+
file.save(filepath)
|
103 |
+
|
104 |
+
try:
|
105 |
+
# 画像処理
|
106 |
+
image_tensor, orig_size = load_image(filepath, hypar)
|
107 |
+
mask = predict(net, image_tensor, orig_size, hypar, device)
|
108 |
+
|
109 |
+
pil_mask = Image.fromarray(mask).convert('L')
|
110 |
+
im_rgb = Image.open(filepath).convert("RGB")
|
111 |
+
im_rgba = im_rgb.copy()
|
112 |
+
im_rgba.putalpha(pil_mask)
|
113 |
+
|
114 |
+
# 結果をバイトデータとして返す
|
115 |
+
output_buffer = io.BytesIO()
|
116 |
+
im_rgba.save(output_buffer, format="PNG")
|
117 |
+
output_buffer.seek(0)
|
118 |
+
|
119 |
+
# 一時ファイルを削除
|
120 |
+
os.remove(filepath)
|
121 |
+
|
122 |
+
return send_file(
|
123 |
+
output_buffer,
|
124 |
+
mimetype='image/png',
|
125 |
+
as_attachment=True,
|
126 |
+
download_name='output.png'
|
127 |
+
)
|
128 |
+
except Exception as e:
|
129 |
+
return jsonify({"error": str(e)}), 500
|
130 |
+
|
131 |
+
@app.route('/api/health', methods=['GET'])
|
132 |
+
def health_check():
|
133 |
+
return jsonify({"status": "healthy"}), 200
|
134 |
+
|
135 |
+
if __name__ == '__main__':
|
136 |
+
app.run(host='0.0.0.0', port=5000, debug=True)
|