soiz1 commited on
Commit
8df85b7
·
verified ·
1 Parent(s): 53adfc8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +181 -152
app.py CHANGED
@@ -1,153 +1,182 @@
1
- import cv2
2
- import gradio as gr
3
- import os
4
- from PIL import Image
5
- import numpy as np
6
- import torch
7
- from torch.autograd import Variable
8
- from torchvision import transforms
9
- import torch.nn.functional as F
10
- import gdown
11
- import matplotlib.pyplot as plt
12
- import warnings
13
- warnings.filterwarnings("ignore")
14
-
15
- os.system("git clone https://github.com/xuebinqin/DIS")
16
- os.system("mv DIS/IS-Net/* .")
17
-
18
- # project imports
19
- from data_loader_cache import normalize, im_reader, im_preprocess
20
- from models import *
21
-
22
- #Helpers
23
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
24
-
25
- # Download official weights
26
- if not os.path.exists("saved_models"):
27
- os.mkdir("saved_models")
28
- os.system("mv isnet.pth saved_models/")
29
-
30
- class GOSNormalize(object):
31
- '''
32
- Normalize the Image using torch.transforms
33
- '''
34
- def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
35
- self.mean = mean
36
- self.std = std
37
-
38
- def __call__(self,image):
39
- image = normalize(image,self.mean,self.std)
40
- return image
41
-
42
-
43
- transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])
44
-
45
- def load_image(im_path, hypar):
46
- im = im_reader(im_path)
47
- im, im_shp = im_preprocess(im, hypar["cache_size"])
48
- im = torch.divide(im,255.0)
49
- shape = torch.from_numpy(np.array(im_shp))
50
- return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape
51
-
52
-
53
- def build_model(hypar,device):
54
- net = hypar["model"]#GOSNETINC(3,1)
55
-
56
- # convert to half precision
57
- if(hypar["model_digit"]=="half"):
58
- net.half()
59
- for layer in net.modules():
60
- if isinstance(layer, nn.BatchNorm2d):
61
- layer.float()
62
-
63
- net.to(device)
64
-
65
- if(hypar["restore_model"]!=""):
66
- net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
67
- net.to(device)
68
- net.eval()
69
- return net
70
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
 
72
- def predict(net, inputs_val, shapes_val, hypar, device):
73
- '''
74
- Given an Image, predict the mask
75
- '''
76
- net.eval()
77
-
78
- if(hypar["model_digit"]=="full"):
79
- inputs_val = inputs_val.type(torch.FloatTensor)
80
- else:
81
- inputs_val = inputs_val.type(torch.HalfTensor)
82
-
83
-
84
- inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable
85
-
86
- ds_val = net(inputs_val_v)[0] # list of 6 results
87
-
88
- pred_val = ds_val[0][0,:,:,:] # B x 1 x H x W # we want the first one which is the most accurate prediction
89
-
90
- ## recover the prediction spatial size to the orignal image size
91
- pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))
92
-
93
- ma = torch.max(pred_val)
94
- mi = torch.min(pred_val)
95
- pred_val = (pred_val-mi)/(ma-mi) # max = 1
96
-
97
- if device == 'cuda': torch.cuda.empty_cache()
98
- return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # it is the mask we need
99
-
100
- # Set Parameters
101
- hypar = {} # paramters for inferencing
102
-
103
-
104
- hypar["model_path"] ="./saved_models" ## load trained weights from this path
105
- hypar["restore_model"] = "isnet.pth" ## name of the to-be-loaded weights
106
- hypar["interm_sup"] = False ## indicate if activate intermediate feature supervision
107
-
108
- ## choose floating point accuracy --
109
- hypar["model_digit"] = "full" ## indicates "half" or "full" accuracy of float number
110
- hypar["seed"] = 0
111
-
112
- hypar["cache_size"] = [1024, 1024] ## cached input spatial resolution, can be configured into different size
113
-
114
- ## data augmentation parameters ---
115
- hypar["input_size"] = [1024, 1024] ## mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images
116
- hypar["crop_size"] = [1024, 1024] ## random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation
117
-
118
- hypar["model"] = ISNetDIS()
119
-
120
- # Build Model
121
- net = build_model(hypar, device)
122
-
123
-
124
- def inference(image):
125
- image_path = image
126
-
127
- image_tensor, orig_size = load_image(image_path, hypar)
128
- mask = predict(net, image_tensor, orig_size, hypar, device)
129
-
130
- pil_mask = Image.fromarray(mask).convert('L')
131
- im_rgb = Image.open(image).convert("RGB")
132
-
133
- im_rgba = im_rgb.copy()
134
- im_rgba.putalpha(pil_mask)
135
-
136
- return [im_rgba, pil_mask]
137
-
138
-
139
- title = "Highly Accurate Dichotomous Image Segmentation"
140
- description = "This is an unofficial demo for DIS, a model that can remove the background from a given image. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below.<br>GitHub: https://github.com/xuebinqin/DIS<br>Telegram bot: https://t.me/restoration_photo_bot<br>[![](https://img.shields.io/twitter/follow/DoEvent?label=@DoEvent&style=social)](https://twitter.com/DoEvent)"
141
- article = "<div><center><img src='https://visitor-badge.glitch.me/badge?page_id=max_skobeev_dis_cmp_public' alt='visitor badge'></center></div>"
142
-
143
- interface = gr.Interface(
144
- fn=inference,
145
- inputs=gr.Image(type='filepath'),
146
- outputs=[gr.Image(type='filepath', format="png"), gr.Image(type='filepath', format="png")],
147
- examples=[['robot.png'], ['ship.png']],
148
- title=title,
149
- description=description,
150
- article=article,
151
- flagging_mode="never",
152
- cache_mode="lazy",
153
- ).queue(api_open=True).launch(show_error=True, show_api=True)
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html lang="en">
3
+ <head>
4
+ <meta charset="UTF-8">
5
+ <meta name="viewport" content="width=device-width, initial-scale=1.0">
6
+ <title>Highly Accurate Dichotomous Image Segmentation</title>
7
+ <style>
8
+ body {
9
+ font-family: Arial, sans-serif;
10
+ max-width: 800px;
11
+ margin: 0 auto;
12
+ padding: 20px;
13
+ line-height: 1.6;
14
+ }
15
+ .container {
16
+ display: flex;
17
+ flex-direction: column;
18
+ gap: 20px;
19
+ }
20
+ .upload-section {
21
+ border: 2px dashed #ccc;
22
+ padding: 20px;
23
+ text-align: center;
24
+ border-radius: 5px;
25
+ }
26
+ .results {
27
+ display: flex;
28
+ gap: 20px;
29
+ flex-wrap: wrap;
30
+ }
31
+ .result-box {
32
+ flex: 1;
33
+ min-width: 300px;
34
+ }
35
+ img {
36
+ max-width: 100%;
37
+ height: auto;
38
+ border: 1px solid #ddd;
39
+ border-radius: 4px;
40
+ }
41
+ button {
42
+ background-color: #4CAF50;
43
+ color: white;
44
+ padding: 10px 15px;
45
+ border: none;
46
+ border-radius: 4px;
47
+ cursor: pointer;
48
+ font-size: 16px;
49
+ }
50
+ button:hover {
51
+ background-color: #45a049;
52
+ }
53
+ .code-block {
54
+ background-color: #f5f5f5;
55
+ padding: 15px;
56
+ border-radius: 5px;
57
+ overflow-x: auto;
58
+ }
59
+ </style>
60
+ </head>
61
+ <body>
62
+ <div class="container">
63
+ <h1>Highly Accurate Dichotomous Image Segmentation</h1>
64
+ <p>This is a demo for DIS, a model that can remove the background from a given image.</p>
65
+
66
+ <div class="upload-section">
67
+ <h2>Upload Image</h2>
68
+ <input type="file" id="imageInput" accept="image/*">
69
+ <button onclick="processImage()">Remove Background</button>
70
+ </div>
71
+
72
+ <div class="results">
73
+ <div class="result-box">
74
+ <h3>Original Image</h3>
75
+ <img id="originalImage" src="" alt="Original image will appear here" style="display: none;">
76
+ </div>
77
+ <div class="result-box">
78
+ <h3>Result (RGBA)</h3>
79
+ <img id="resultImage" src="" alt="Result will appear here" style="display: none;">
80
+ </div>
81
+ <div class="result-box">
82
+ <h3>Mask</h3>
83
+ <img id="maskImage" src="" alt="Mask will appear here" style="display: none;">
84
+ </div>
85
+ </div>
86
+
87
+ <div>
88
+ <h2>API Usage Example</h2>
89
+ <p>You can also use the API directly with this JavaScript code:</p>
90
+ <div class="code-block">
91
+ <pre><code>
92
+ async function removeBackground(imageFile) {
93
+ const formData = new FormData();
94
+ formData.append('image', imageFile);
95
 
96
+ try {
97
+ const response = await fetch('/api/remove_bg', {
98
+ method: 'POST',
99
+ body: formData
100
+ });
101
+
102
+ if (!response.ok) {
103
+ throw new Error(`HTTP error! status: ${response.status}`);
104
+ }
105
+
106
+ const data = await response.json();
107
+ console.log('Result:', data);
108
+ return data;
109
+ } catch (error) {
110
+ console.error('Error:', error);
111
+ throw error;
112
+ }
113
+ }
114
+
115
+ // Usage example:
116
+ // const fileInput = document.querySelector('input[type="file"]');
117
+ // removeBackground(fileInput.files[0])
118
+ // .then(data => {
119
+ // // Handle response data
120
+ // document.getElementById('resultImage').src = data.rgba_url;
121
+ // document.getElementById('maskImage').src = data.mask_url;
122
+ // });
123
+ </code></pre>
124
+ </div>
125
+ </div>
126
+ </div>
127
+
128
+ <script>
129
+ function processImage() {
130
+ const fileInput = document.getElementById('imageInput');
131
+ if (!fileInput.files || fileInput.files.length === 0) {
132
+ alert('Please select an image first');
133
+ return;
134
+ }
135
+
136
+ const file = fileInput.files[0];
137
+ const reader = new FileReader();
138
+
139
+ reader.onload = function(e) {
140
+ document.getElementById('originalImage').src = e.target.result;
141
+ document.getElementById('originalImage').style.display = 'block';
142
+ };
143
+ reader.readAsDataURL(file);
144
+
145
+ removeBackground(file)
146
+ .then(data => {
147
+ document.getElementById('resultImage').src = data.rgba_url;
148
+ document.getElementById('resultImage').style.display = 'block';
149
+ document.getElementById('maskImage').src = data.mask_url;
150
+ document.getElementById('maskImage').style.display = 'block';
151
+ })
152
+ .catch(error => {
153
+ console.error('Error:', error);
154
+ alert('An error occurred while processing the image');
155
+ });
156
+ }
157
+
158
+ async function removeBackground(imageFile) {
159
+ const formData = new FormData();
160
+ formData.append('image', imageFile);
161
+
162
+ try {
163
+ const response = await fetch('/api/remove_bg', {
164
+ method: 'POST',
165
+ body: formData
166
+ });
167
+
168
+ if (!response.ok) {
169
+ throw new Error(`HTTP error! status: ${response.status}`);
170
+ }
171
+
172
+ const data = await response.json();
173
+ console.log('Result:', data);
174
+ return data;
175
+ } catch (error) {
176
+ console.error('Error:', error);
177
+ throw error;
178
+ }
179
+ }
180
+ </script>
181
+ </body>
182
+ </html>