soiz1 commited on
Commit
223a898
·
verified ·
1 Parent(s): d23171a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -0
app.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from diffusers import StableDiffusionPipeline
3
+ import torch
4
+
5
+ # Hugging Faceのトークン
6
+ HUGGING_FACE_TOKEN = "あなたのHugging Face APIトークン"
7
+
8
+ # モデルのロード
9
+ def load_model():
10
+ model_id = "double-negative/hololive-diffusion"
11
+ pipe = StableDiffusionPipeline.from_pretrained(
12
+ model_id,
13
+ use_auth_token=HUGGING_FACE_TOKEN
14
+ )
15
+ pipe.to("cuda" if torch.cuda.is_available() else "cpu")
16
+ return pipe
17
+
18
+ # 画像生成関数
19
+ def generate_image(prompt, num_inference_steps, guidance_scale):
20
+ try:
21
+ result = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale)
22
+ return result.images[0]
23
+ except Exception as e:
24
+ return f"エラーが発生しました: {e}"
25
+
26
+ # Gradioインターフェースの定義
27
+ pipe = load_model()
28
+
29
+ with gr.Blocks() as demo:
30
+ gr.Markdown("## Hololive Diffusion 画像生成")
31
+
32
+ with gr.Row():
33
+ with gr.Column():
34
+ prompt = gr.Textbox(label="プロンプト", placeholder="例: かわいい猫のイラスト")
35
+ num_inference_steps = gr.Slider(1, 100, value=50, step=1, label="推論ステップ数")
36
+ guidance_scale = gr.Slider(1, 20, value=7.5, step=0.1, label="ガイダンススケール")
37
+ generate_button = gr.Button("画像生成")
38
+ with gr.Column():
39
+ output_image = gr.Image(label="生成された画像")
40
+
41
+ generate_button.click(
42
+ fn=generate_image,
43
+ inputs=[prompt, num_inference_steps, guidance_scale],
44
+ outputs=[output_image]
45
+ )
46
+
47
+ # アプリの実行
48
+ demo.launch()