Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- README.md +4 -4
- app.py +24 -0
- requirements.txt +2 -0
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: indigo
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
1 |
---
|
2 |
+
title: Image Prompt
|
3 |
+
emoji: 🐠
|
4 |
colorFrom: indigo
|
5 |
+
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.4.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
app.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Hugging Faceの互換性のあるモデルをロード(image-to-textタスク用)
|
5 |
+
model_name = "Salesforce/blip-image-captioning-base"
|
6 |
+
image_to_text = pipeline("image-to-text", model=model_name)
|
7 |
+
|
8 |
+
# Gradioの関数定義
|
9 |
+
def generate_text_from_image(image):
|
10 |
+
# 画像からテキストを生成
|
11 |
+
result = image_to_text(image)
|
12 |
+
return result[0]["generated_text"]
|
13 |
+
|
14 |
+
# Gradioインターフェースの設定
|
15 |
+
iface = gr.Interface(
|
16 |
+
fn=generate_text_from_image,
|
17 |
+
inputs=gr.Image(type="pil"),
|
18 |
+
outputs="text",
|
19 |
+
title="Image to Text with BLIP Model",
|
20 |
+
description="Upload an image to get a descriptive text generated by the BLIP image captioning model."
|
21 |
+
)
|
22 |
+
|
23 |
+
# Gradioアプリケーションの起動
|
24 |
+
iface.launch(server_name="0.0.0.0", server_port=7860)
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|