File size: 21,673 Bytes
30c32c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
/* constant parameters */
var WSIZE = 32768, // Sliding Window size
    STORED_BLOCK = 0,
    STATIC_TREES = 1,
    DYN_TREES = 2,

    /* for inflate */
    lbits = 9, // bits in base literal/length lookup table
    dbits = 6, // bits in base distance lookup table

    /* variables (inflate) */
    slide,
    wp, // current position in slide
    fixed_tl = null, // inflate static
    fixed_td, // inflate static
    fixed_bl, // inflate static
    fixed_bd, // inflate static
    bit_buf, // bit buffer
    bit_len, // bits in bit buffer
    method,
    eof,
    copy_leng,
    copy_dist,
    tl, // literal length decoder table
    td, // literal distance decoder table
    bl, // number of bits decoded by tl
    bd, // number of bits decoded by td

    inflate_data,
    inflate_pos,


    /* constant tables (inflate) */
    MASK_BITS = [
        0x0000,
        0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
        0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
    ],
    // Tables for deflate from PKZIP's appnote.txt.
    // Copy lengths for literal codes 257..285
    cplens = [
        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0
    ],
    /* note: see note #13 above about the 258 in this list. */
    // Extra bits for literal codes 257..285
    cplext = [
        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
        3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99 // 99==invalid
    ],
    // Copy offsets for distance codes 0..29
    cpdist = [
        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
        8193, 12289, 16385, 24577
    ],
    // Extra bits for distance codes
    cpdext = [
        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
        7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
        12, 12, 13, 13
    ],
    // Order of the bit length code lengths
    border = [
        16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
    ];
/* objects (inflate) */

function HuftList() {
    this.next = null;
    this.list = null;
}

function HuftNode() {
    this.e = 0; // number of extra bits or operation
    this.b = 0; // number of bits in this code or subcode

    // union
    this.n = 0; // literal, length base, or distance base
    this.t = null; // (HuftNode) pointer to next level of table
}

/*
* @param b-  code lengths in bits (all assumed <= BMAX)
* @param n- number of codes (assumed <= N_MAX)
* @param s- number of simple-valued codes (0..s-1)
* @param d- list of base values for non-simple codes
* @param e- list of extra bits for non-simple codes
* @param mm- maximum lookup bits
*/
function HuftBuild(b, n, s, d, e, mm) {
    this.BMAX = 16; // maximum bit length of any code
    this.N_MAX = 288; // maximum number of codes in any set
    this.status = 0; // 0: success, 1: incomplete table, 2: bad input
    this.root = null; // (HuftList) starting table
    this.m = 0; // maximum lookup bits, returns actual

    /* Given a list of code lengths and a maximum table size, make a set of
    tables to decode that set of codes. Return zero on success, one if
    the given code set is incomplete (the tables are still built in this
    case), two if the input is invalid (all zero length codes or an
    oversubscribed set of lengths), and three if not enough memory.
    The code with value 256 is special, and the tables are constructed
    so that no bits beyond that code are fetched when that code is
    decoded. */
    var a; // counter for codes of length k
    var c = [];
    var el; // length of EOB code (value 256)
    var f; // i repeats in table every f entries
    var g; // maximum code length
    var h; // table level
    var i; // counter, current code
    var j; // counter
    var k; // number of bits in current code
    var lx = [];
    var p; // pointer into c[], b[], or v[]
    var pidx; // index of p
    var q; // (HuftNode) points to current table
    var r = new HuftNode(); // table entry for structure assignment
    var u = [];
    var v = [];
    var w;
    var x = [];
    var xp; // pointer into x or c
    var y; // number of dummy codes added
    var z; // number of entries in current table
    var o;
    var tail; // (HuftList)

    tail = this.root = null;

    // bit length count table
    for (i = 0; i < this.BMAX + 1; i++) {
        c[i] = 0;
    }
    // stack of bits per table
    for (i = 0; i < this.BMAX + 1; i++) {
        lx[i] = 0;
    }
    // HuftNode[BMAX][]  table stack
    for (i = 0; i < this.BMAX; i++) {
        u[i] = null;
    }
    // values in order of bit length
    for (i = 0; i < this.N_MAX; i++) {
        v[i] = 0;
    }
    // bit offsets, then code stack
    for (i = 0; i < this.BMAX + 1; i++) {
        x[i] = 0;
    }

    // Generate counts for each bit length
    el = n > 256 ? b[256] : this.BMAX; // set length of EOB code, if any
    p = b; pidx = 0;
    i = n;
    do {
        c[p[pidx]]++; // assume all entries <= BMAX
        pidx++;
    } while (--i > 0);
    if (c[0] === n) { // null input--all zero length codes
        this.root = null;
        this.m = 0;
        this.status = 0;
        return;
    }

    // Find minimum and maximum length, bound *m by those
    for (j = 1; j <= this.BMAX; j++) {
        if (c[j] !== 0) {
            break;
        }
    }
    k = j; // minimum code length
    if (mm < j) {
        mm = j;
    }
    for (i = this.BMAX; i !== 0; i--) {
        if (c[i] !== 0) {
            break;
        }
    }
    g = i; // maximum code length
    if (mm > i) {
        mm = i;
    }

    // Adjust last length count to fill out codes, if needed
    for (y = 1 << j; j < i; j++, y <<= 1) {
        if ((y -= c[j]) < 0) {
            this.status = 2; // bad input: more codes than bits
            this.m = mm;
            return;
        }
    }
    if ((y -= c[i]) < 0) {
        this.status = 2;
        this.m = mm;
        return;
    }
    c[i] += y;

    // Generate starting offsets into the value table for each length
    x[1] = j = 0;
    p = c;
    pidx = 1;
    xp = 2;
    while (--i > 0) { // note that i == g from above
        x[xp++] = (j += p[pidx++]);
    }

    // Make a table of values in order of bit lengths
    p = b; pidx = 0;
    i = 0;
    do {
        if ((j = p[pidx++]) !== 0) {
            v[x[j]++] = i;
        }
    } while (++i < n);
    n = x[g]; // set n to length of v

    // Generate the Huffman codes and for each, make the table entries
    x[0] = i = 0; // first Huffman code is zero
    p = v; pidx = 0; // grab values in bit order
    h = -1; // no tables yet--level -1
    w = lx[0] = 0; // no bits decoded yet
    q = null; // ditto
    z = 0; // ditto

    // go through the bit lengths (k already is bits in shortest code)
    for (null; k <= g; k++) {
        a = c[k];
        while (a-- > 0) {
            // here i is the Huffman code of length k bits for value p[pidx]
            // make tables up to required level
            while (k > w + lx[1 + h]) {
                w += lx[1 + h]; // add bits already decoded
                h++;

                // compute minimum size table less than or equal to *m bits
                z = (z = g - w) > mm ? mm : z; // upper limit
                if ((f = 1 << (j = k - w)) > a + 1) { // try a k-w bit table
                    // too few codes for k-w bit table
                    f -= a + 1; // deduct codes from patterns left
                    xp = k;
                    while (++j < z) { // try smaller tables up to z bits
                        if ((f <<= 1) <= c[++xp]) {
                            break; // enough codes to use up j bits
                        }
                        f -= c[xp]; // else deduct codes from patterns
                    }
                }
                if (w + j > el && w < el) {
                    j = el - w; // make EOB code end at table
                }
                z = 1 << j; // table entries for j-bit table
                lx[1 + h] = j; // set table size in stack

                // allocate and link in new table
                q = [];
                for (o = 0; o < z; o++) {
                    q[o] = new HuftNode();
                }

                if (!tail) {
                    tail = this.root = new HuftList();
                } else {
                    tail = tail.next = new HuftList();
                }
                tail.next = null;
                tail.list = q;
                u[h] = q; // table starts after link

                /* connect to last table, if there is one */
                if (h > 0) {
                    x[h] = i; // save pattern for backing up
                    r.b = lx[h]; // bits to dump before this table
                    r.e = 16 + j; // bits in this table
                    r.t = q; // pointer to this table
                    j = (i & ((1 << w) - 1)) >> (w - lx[h]);
                    u[h - 1][j].e = r.e;
                    u[h - 1][j].b = r.b;
                    u[h - 1][j].n = r.n;
                    u[h - 1][j].t = r.t;
                }
            }

            // set up table entry in r
            r.b = k - w;
            if (pidx >= n) {
                r.e = 99; // out of values--invalid code
            } else if (p[pidx] < s) {
                r.e = (p[pidx] < 256 ? 16 : 15); // 256 is end-of-block code
                r.n = p[pidx++]; // simple code is just the value
            } else {
                r.e = e[p[pidx] - s]; // non-simple--look up in lists
                r.n = d[p[pidx++] - s];
            }

            // fill code-like entries with r //
            f = 1 << (k - w);
            for (j = i >> w; j < z; j += f) {
                q[j].e = r.e;
                q[j].b = r.b;
                q[j].n = r.n;
                q[j].t = r.t;
            }

            // backwards increment the k-bit code i
            for (j = 1 << (k - 1); (i & j) !== 0; j >>= 1) {
                i ^= j;
            }
            i ^= j;

            // backup over finished tables
            while ((i & ((1 << w) - 1)) !== x[h]) {
                w -= lx[h]; // don't need to update q
                h--;
            }
        }
    }

    /* return actual size of base table */
    this.m = lx[1];

    /* Return true (1) if we were given an incomplete table */
    this.status = ((y !== 0 && g !== 1) ? 1 : 0);
}


/* routines (inflate) */

function GET_BYTE() {
    if (inflate_data.length === inflate_pos) {
        return -1;
    }
    return inflate_data[inflate_pos++] & 0xff;
}

function NEEDBITS(n) {
    while (bit_len < n) {
        bit_buf |= GET_BYTE() << bit_len;
        bit_len += 8;
    }
}

function GETBITS(n) {
    return bit_buf & MASK_BITS[n];
}

function DUMPBITS(n) {
    bit_buf >>= n;
    bit_len -= n;
}

function inflate_codes(buff, off, size) {
    // inflate (decompress) the codes in a deflated (compressed) block.
    // Return an error code or zero if it all goes ok.
    var e; // table entry flag/number of extra bits
    var t; // (HuftNode) pointer to table entry
    var n;

    if (size === 0) {
        return 0;
    }

    // inflate the coded data
    n = 0;
    for (; ;) { // do until end of block
        NEEDBITS(bl);
        t = tl.list[GETBITS(bl)];
        e = t.e;
        while (e > 16) {
            if (e === 99) {
                return -1;
            }
            DUMPBITS(t.b);
            e -= 16;
            NEEDBITS(e);
            t = t.t[GETBITS(e)];
            e = t.e;
        }
        DUMPBITS(t.b);

        if (e === 16) { // then it's a literal
            wp &= WSIZE - 1;
            buff[off + n++] = slide[wp++] = t.n;
            if (n === size) {
                return size;
            }
            continue;
        }

        // exit if end of block
        if (e === 15) {
            break;
        }

        // it's an EOB or a length

        // get length of block to copy
        NEEDBITS(e);
        copy_leng = t.n + GETBITS(e);
        DUMPBITS(e);

        // decode distance of block to copy
        NEEDBITS(bd);
        t = td.list[GETBITS(bd)];
        e = t.e;

        while (e > 16) {
            if (e === 99) {
                return -1;
            }
            DUMPBITS(t.b);
            e -= 16;
            NEEDBITS(e);
            t = t.t[GETBITS(e)];
            e = t.e;
        }
        DUMPBITS(t.b);
        NEEDBITS(e);
        copy_dist = wp - t.n - GETBITS(e);
        DUMPBITS(e);

        // do the copy
        while (copy_leng > 0 && n < size) {
            copy_leng--;
            copy_dist &= WSIZE - 1;
            wp &= WSIZE - 1;
            buff[off + n++] = slide[wp++] = slide[copy_dist++];
        }

        if (n === size) {
            return size;
        }
    }

    method = -1; // done
    return n;
}

function inflate_stored(buff, off, size) {
    /* "decompress" an inflated type 0 (stored) block. */
    var n;

    // go to byte boundary
    n = bit_len & 7;
    DUMPBITS(n);

    // get the length and its complement
    NEEDBITS(16);
    n = GETBITS(16);
    DUMPBITS(16);
    NEEDBITS(16);
    if (n !== ((~bit_buf) & 0xffff)) {
        return -1; // error in compressed data
    }
    DUMPBITS(16);

    // read and output the compressed data
    copy_leng = n;

    n = 0;
    while (copy_leng > 0 && n < size) {
        copy_leng--;
        wp &= WSIZE - 1;
        NEEDBITS(8);
        buff[off + n++] = slide[wp++] = GETBITS(8);
        DUMPBITS(8);
    }

    if (copy_leng === 0) {
        method = -1; // done
    }
    return n;
}

function inflate_fixed(buff, off, size) {
    // decompress an inflated type 1 (fixed Huffman codes) block.  We should
    // either replace this with a custom decoder, or at least precompute the
    // Huffman tables.

    // if first time, set up tables for fixed blocks
    if (!fixed_tl) {
        var i; // temporary variable
        var l = []; // 288 length list for huft_build (initialized below)
        var h; // HuftBuild

        // literal table
        for (i = 0; i < 144; i++) {
            l[i] = 8;
        }
        for (null; i < 256; i++) {
            l[i] = 9;
        }
        for (null; i < 280; i++) {
            l[i] = 7;
        }
        for (null; i < 288; i++) { // make a complete, but wrong code set
            l[i] = 8;
        }
        fixed_bl = 7;

        h = new HuftBuild(l, 288, 257, cplens, cplext, fixed_bl);
        if (h.status !== 0) {
            console.error("HufBuild error: " + h.status);
            return -1;
        }
        fixed_tl = h.root;
        fixed_bl = h.m;

        // distance table
        for (i = 0; i < 30; i++) { // make an incomplete code set
            l[i] = 5;
        }
        fixed_bd = 5;

        h = new HuftBuild(l, 30, 0, cpdist, cpdext, fixed_bd);
        if (h.status > 1) {
            fixed_tl = null;
            console.error("HufBuild error: " + h.status);
            return -1;
        }
        fixed_td = h.root;
        fixed_bd = h.m;
    }

    tl = fixed_tl;
    td = fixed_td;
    bl = fixed_bl;
    bd = fixed_bd;
    return inflate_codes(buff, off, size);
}

function inflate_dynamic(buff, off, size) {
    // decompress an inflated type 2 (dynamic Huffman codes) block.
    var i; // temporary variables
    var j;
    var l; // last length
    var n; // number of lengths to get
    var t; // (HuftNode) literal/length code table
    var nb; // number of bit length codes
    var nl; // number of literal/length codes
    var nd; // number of distance codes
    var ll = [];
    var h; // (HuftBuild)

    // literal/length and distance code lengths
    for (i = 0; i < 286 + 30; i++) {
        ll[i] = 0;
    }

    // read in table lengths
    NEEDBITS(5);
    nl = 257 + GETBITS(5); // number of literal/length codes
    DUMPBITS(5);
    NEEDBITS(5);
    nd = 1 + GETBITS(5); // number of distance codes
    DUMPBITS(5);
    NEEDBITS(4);
    nb = 4 + GETBITS(4); // number of bit length codes
    DUMPBITS(4);
    if (nl > 286 || nd > 30) {
        return -1; // bad lengths
    }

    // read in bit-length-code lengths
    for (j = 0; j < nb; j++) {
        NEEDBITS(3);
        ll[border[j]] = GETBITS(3);
        DUMPBITS(3);
    }
    for (null; j < 19; j++) {
        ll[border[j]] = 0;
    }

    // build decoding table for trees--single level, 7 bit lookup
    bl = 7;
    h = new HuftBuild(ll, 19, 19, null, null, bl);
    if (h.status !== 0) {
        return -1; // incomplete code set
    }

    tl = h.root;
    bl = h.m;

    // read in literal and distance code lengths
    n = nl + nd;
    i = l = 0;
    while (i < n) {
        NEEDBITS(bl);
        t = tl.list[GETBITS(bl)];
        j = t.b;
        DUMPBITS(j);
        j = t.n;
        if (j < 16) { // length of code in bits (0..15)
            ll[i++] = l = j; // save last length in l
        } else if (j === 16) { // repeat last length 3 to 6 times
            NEEDBITS(2);
            j = 3 + GETBITS(2);
            DUMPBITS(2);
            if (i + j > n) {
                return -1;
            }
            while (j-- > 0) {
                ll[i++] = l;
            }
        } else if (j === 17) { // 3 to 10 zero length codes
            NEEDBITS(3);
            j = 3 + GETBITS(3);
            DUMPBITS(3);
            if (i + j > n) {
                return -1;
            }
            while (j-- > 0) {
                ll[i++] = 0;
            }
            l = 0;
        } else { // j === 18: 11 to 138 zero length codes
            NEEDBITS(7);
            j = 11 + GETBITS(7);
            DUMPBITS(7);
            if (i + j > n) {
                return -1;
            }
            while (j-- > 0) {
                ll[i++] = 0;
            }
            l = 0;
        }
    }

    // build the decoding tables for literal/length and distance codes
    bl = lbits;
    h = new HuftBuild(ll, nl, 257, cplens, cplext, bl);
    if (bl === 0) { // no literals or lengths
        h.status = 1;
    }
    if (h.status !== 0) {
        if (h.status !== 1) {
            return -1; // incomplete code set
        }
        // **incomplete literal tree**
    }
    tl = h.root;
    bl = h.m;

    for (i = 0; i < nd; i++) {
        ll[i] = ll[i + nl];
    }
    bd = dbits;
    h = new HuftBuild(ll, nd, 0, cpdist, cpdext, bd);
    td = h.root;
    bd = h.m;

    if (bd === 0 && nl > 257) { // lengths but no distances
        // **incomplete distance tree**
        return -1;
    }
    /*
    if (h.status === 1) {
        // **incomplete distance tree**
    }
    */
    if (h.status !== 0) {
        return -1;
    }

    // decompress until an end-of-block code
    return inflate_codes(buff, off, size);
}

function inflate_start() {
    if (!slide) {
        slide = []; // new Array(2 * WSIZE); // slide.length is never called
    }
    wp = 0;
    bit_buf = 0;
    bit_len = 0;
    method = -1;
    eof = false;
    copy_leng = copy_dist = 0;
    tl = null;
}

function inflate_internal(buff, off, size) {
    // decompress an inflated entry
    var n, i;

    n = 0;
    while (n < size) {
        if (eof && method === -1) {
            return n;
        }

        if (copy_leng > 0) {
            if (method !== STORED_BLOCK) {
                // STATIC_TREES or DYN_TREES
                while (copy_leng > 0 && n < size) {
                    copy_leng--;
                    copy_dist &= WSIZE - 1;
                    wp &= WSIZE - 1;
                    buff[off + n++] = slide[wp++] = slide[copy_dist++];
                }
            } else {
                while (copy_leng > 0 && n < size) {
                    copy_leng--;
                    wp &= WSIZE - 1;
                    NEEDBITS(8);
                    buff[off + n++] = slide[wp++] = GETBITS(8);
                    DUMPBITS(8);
                }
                if (copy_leng === 0) {
                    method = -1; // done
                }
            }
            if (n === size) {
                return n;
            }
        }

        if (method === -1) {
            if (eof) {
                break;
            }

            // read in last block bit
            NEEDBITS(1);
            if (GETBITS(1) !== 0) {
                eof = true;
            }
            DUMPBITS(1);

            // read in block type
            NEEDBITS(2);
            method = GETBITS(2);
            DUMPBITS(2);
            tl = null;
            copy_leng = 0;
        }

        switch (method) {
            case STORED_BLOCK:
                i = inflate_stored(buff, off + n, size - n);
                break;

            case STATIC_TREES:
                if (tl) {
                    i = inflate_codes(buff, off + n, size - n);
                } else {
                    i = inflate_fixed(buff, off + n, size - n);
                }
                break;

            case DYN_TREES:
                if (tl) {
                    i = inflate_codes(buff, off + n, size - n);
                } else {
                    i = inflate_dynamic(buff, off + n, size - n);
                }
                break;

            default: // error
                i = -1;
                break;
        }

        if (i === -1) {
            if (eof) {
                return 0;
            }
            return -1;
        }
        n += i;
    }
    return n;
}

function inflate(arr) {
    var buff = [], i;

    inflate_start();
    inflate_data = arr;
    inflate_pos = 0;

    do {
        i = inflate_internal(buff, buff.length, 1024);
    } while (i > 0);
    inflate_data = null; // G.C.
    return buff;
}

module.exports = inflate;