Spaces:
Build error
Build error
/* constant parameters */ | |
var WSIZE = 32768, // Sliding Window size | |
STORED_BLOCK = 0, | |
STATIC_TREES = 1, | |
DYN_TREES = 2, | |
/* for inflate */ | |
lbits = 9, // bits in base literal/length lookup table | |
dbits = 6, // bits in base distance lookup table | |
/* variables (inflate) */ | |
slide, | |
wp, // current position in slide | |
fixed_tl = null, // inflate static | |
fixed_td, // inflate static | |
fixed_bl, // inflate static | |
fixed_bd, // inflate static | |
bit_buf, // bit buffer | |
bit_len, // bits in bit buffer | |
method, | |
eof, | |
copy_leng, | |
copy_dist, | |
tl, // literal length decoder table | |
td, // literal distance decoder table | |
bl, // number of bits decoded by tl | |
bd, // number of bits decoded by td | |
inflate_data, | |
inflate_pos, | |
/* constant tables (inflate) */ | |
MASK_BITS = [ | |
0x0000, | |
0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, | |
0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff | |
], | |
// Tables for deflate from PKZIP's appnote.txt. | |
// Copy lengths for literal codes 257..285 | |
cplens = [ | |
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, | |
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0 | |
], | |
/* note: see note #13 above about the 258 in this list. */ | |
// Extra bits for literal codes 257..285 | |
cplext = [ | |
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, | |
3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99 // 99==invalid | |
], | |
// Copy offsets for distance codes 0..29 | |
cpdist = [ | |
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, | |
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, | |
8193, 12289, 16385, 24577 | |
], | |
// Extra bits for distance codes | |
cpdext = [ | |
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, | |
7, 7, 8, 8, 9, 9, 10, 10, 11, 11, | |
12, 12, 13, 13 | |
], | |
// Order of the bit length code lengths | |
border = [ | |
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 | |
]; | |
/* objects (inflate) */ | |
function HuftList() { | |
this.next = null; | |
this.list = null; | |
} | |
function HuftNode() { | |
this.e = 0; // number of extra bits or operation | |
this.b = 0; // number of bits in this code or subcode | |
// union | |
this.n = 0; // literal, length base, or distance base | |
this.t = null; // (HuftNode) pointer to next level of table | |
} | |
/* | |
* @param b- code lengths in bits (all assumed <= BMAX) | |
* @param n- number of codes (assumed <= N_MAX) | |
* @param s- number of simple-valued codes (0..s-1) | |
* @param d- list of base values for non-simple codes | |
* @param e- list of extra bits for non-simple codes | |
* @param mm- maximum lookup bits | |
*/ | |
function HuftBuild(b, n, s, d, e, mm) { | |
this.BMAX = 16; // maximum bit length of any code | |
this.N_MAX = 288; // maximum number of codes in any set | |
this.status = 0; // 0: success, 1: incomplete table, 2: bad input | |
this.root = null; // (HuftList) starting table | |
this.m = 0; // maximum lookup bits, returns actual | |
/* Given a list of code lengths and a maximum table size, make a set of | |
tables to decode that set of codes. Return zero on success, one if | |
the given code set is incomplete (the tables are still built in this | |
case), two if the input is invalid (all zero length codes or an | |
oversubscribed set of lengths), and three if not enough memory. | |
The code with value 256 is special, and the tables are constructed | |
so that no bits beyond that code are fetched when that code is | |
decoded. */ | |
var a; // counter for codes of length k | |
var c = []; | |
var el; // length of EOB code (value 256) | |
var f; // i repeats in table every f entries | |
var g; // maximum code length | |
var h; // table level | |
var i; // counter, current code | |
var j; // counter | |
var k; // number of bits in current code | |
var lx = []; | |
var p; // pointer into c[], b[], or v[] | |
var pidx; // index of p | |
var q; // (HuftNode) points to current table | |
var r = new HuftNode(); // table entry for structure assignment | |
var u = []; | |
var v = []; | |
var w; | |
var x = []; | |
var xp; // pointer into x or c | |
var y; // number of dummy codes added | |
var z; // number of entries in current table | |
var o; | |
var tail; // (HuftList) | |
tail = this.root = null; | |
// bit length count table | |
for (i = 0; i < this.BMAX + 1; i++) { | |
c[i] = 0; | |
} | |
// stack of bits per table | |
for (i = 0; i < this.BMAX + 1; i++) { | |
lx[i] = 0; | |
} | |
// HuftNode[BMAX][] table stack | |
for (i = 0; i < this.BMAX; i++) { | |
u[i] = null; | |
} | |
// values in order of bit length | |
for (i = 0; i < this.N_MAX; i++) { | |
v[i] = 0; | |
} | |
// bit offsets, then code stack | |
for (i = 0; i < this.BMAX + 1; i++) { | |
x[i] = 0; | |
} | |
// Generate counts for each bit length | |
el = n > 256 ? b[256] : this.BMAX; // set length of EOB code, if any | |
p = b; pidx = 0; | |
i = n; | |
do { | |
c[p[pidx]]++; // assume all entries <= BMAX | |
pidx++; | |
} while (--i > 0); | |
if (c[0] === n) { // null input--all zero length codes | |
this.root = null; | |
this.m = 0; | |
this.status = 0; | |
return; | |
} | |
// Find minimum and maximum length, bound *m by those | |
for (j = 1; j <= this.BMAX; j++) { | |
if (c[j] !== 0) { | |
break; | |
} | |
} | |
k = j; // minimum code length | |
if (mm < j) { | |
mm = j; | |
} | |
for (i = this.BMAX; i !== 0; i--) { | |
if (c[i] !== 0) { | |
break; | |
} | |
} | |
g = i; // maximum code length | |
if (mm > i) { | |
mm = i; | |
} | |
// Adjust last length count to fill out codes, if needed | |
for (y = 1 << j; j < i; j++, y <<= 1) { | |
if ((y -= c[j]) < 0) { | |
this.status = 2; // bad input: more codes than bits | |
this.m = mm; | |
return; | |
} | |
} | |
if ((y -= c[i]) < 0) { | |
this.status = 2; | |
this.m = mm; | |
return; | |
} | |
c[i] += y; | |
// Generate starting offsets into the value table for each length | |
x[1] = j = 0; | |
p = c; | |
pidx = 1; | |
xp = 2; | |
while (--i > 0) { // note that i == g from above | |
x[xp++] = (j += p[pidx++]); | |
} | |
// Make a table of values in order of bit lengths | |
p = b; pidx = 0; | |
i = 0; | |
do { | |
if ((j = p[pidx++]) !== 0) { | |
v[x[j]++] = i; | |
} | |
} while (++i < n); | |
n = x[g]; // set n to length of v | |
// Generate the Huffman codes and for each, make the table entries | |
x[0] = i = 0; // first Huffman code is zero | |
p = v; pidx = 0; // grab values in bit order | |
h = -1; // no tables yet--level -1 | |
w = lx[0] = 0; // no bits decoded yet | |
q = null; // ditto | |
z = 0; // ditto | |
// go through the bit lengths (k already is bits in shortest code) | |
for (null; k <= g; k++) { | |
a = c[k]; | |
while (a-- > 0) { | |
// here i is the Huffman code of length k bits for value p[pidx] | |
// make tables up to required level | |
while (k > w + lx[1 + h]) { | |
w += lx[1 + h]; // add bits already decoded | |
h++; | |
// compute minimum size table less than or equal to *m bits | |
z = (z = g - w) > mm ? mm : z; // upper limit | |
if ((f = 1 << (j = k - w)) > a + 1) { // try a k-w bit table | |
// too few codes for k-w bit table | |
f -= a + 1; // deduct codes from patterns left | |
xp = k; | |
while (++j < z) { // try smaller tables up to z bits | |
if ((f <<= 1) <= c[++xp]) { | |
break; // enough codes to use up j bits | |
} | |
f -= c[xp]; // else deduct codes from patterns | |
} | |
} | |
if (w + j > el && w < el) { | |
j = el - w; // make EOB code end at table | |
} | |
z = 1 << j; // table entries for j-bit table | |
lx[1 + h] = j; // set table size in stack | |
// allocate and link in new table | |
q = []; | |
for (o = 0; o < z; o++) { | |
q[o] = new HuftNode(); | |
} | |
if (!tail) { | |
tail = this.root = new HuftList(); | |
} else { | |
tail = tail.next = new HuftList(); | |
} | |
tail.next = null; | |
tail.list = q; | |
u[h] = q; // table starts after link | |
/* connect to last table, if there is one */ | |
if (h > 0) { | |
x[h] = i; // save pattern for backing up | |
r.b = lx[h]; // bits to dump before this table | |
r.e = 16 + j; // bits in this table | |
r.t = q; // pointer to this table | |
j = (i & ((1 << w) - 1)) >> (w - lx[h]); | |
u[h - 1][j].e = r.e; | |
u[h - 1][j].b = r.b; | |
u[h - 1][j].n = r.n; | |
u[h - 1][j].t = r.t; | |
} | |
} | |
// set up table entry in r | |
r.b = k - w; | |
if (pidx >= n) { | |
r.e = 99; // out of values--invalid code | |
} else if (p[pidx] < s) { | |
r.e = (p[pidx] < 256 ? 16 : 15); // 256 is end-of-block code | |
r.n = p[pidx++]; // simple code is just the value | |
} else { | |
r.e = e[p[pidx] - s]; // non-simple--look up in lists | |
r.n = d[p[pidx++] - s]; | |
} | |
// fill code-like entries with r // | |
f = 1 << (k - w); | |
for (j = i >> w; j < z; j += f) { | |
q[j].e = r.e; | |
q[j].b = r.b; | |
q[j].n = r.n; | |
q[j].t = r.t; | |
} | |
// backwards increment the k-bit code i | |
for (j = 1 << (k - 1); (i & j) !== 0; j >>= 1) { | |
i ^= j; | |
} | |
i ^= j; | |
// backup over finished tables | |
while ((i & ((1 << w) - 1)) !== x[h]) { | |
w -= lx[h]; // don't need to update q | |
h--; | |
} | |
} | |
} | |
/* return actual size of base table */ | |
this.m = lx[1]; | |
/* Return true (1) if we were given an incomplete table */ | |
this.status = ((y !== 0 && g !== 1) ? 1 : 0); | |
} | |
/* routines (inflate) */ | |
function GET_BYTE() { | |
if (inflate_data.length === inflate_pos) { | |
return -1; | |
} | |
return inflate_data[inflate_pos++] & 0xff; | |
} | |
function NEEDBITS(n) { | |
while (bit_len < n) { | |
bit_buf |= GET_BYTE() << bit_len; | |
bit_len += 8; | |
} | |
} | |
function GETBITS(n) { | |
return bit_buf & MASK_BITS[n]; | |
} | |
function DUMPBITS(n) { | |
bit_buf >>= n; | |
bit_len -= n; | |
} | |
function inflate_codes(buff, off, size) { | |
// inflate (decompress) the codes in a deflated (compressed) block. | |
// Return an error code or zero if it all goes ok. | |
var e; // table entry flag/number of extra bits | |
var t; // (HuftNode) pointer to table entry | |
var n; | |
if (size === 0) { | |
return 0; | |
} | |
// inflate the coded data | |
n = 0; | |
for (; ;) { // do until end of block | |
NEEDBITS(bl); | |
t = tl.list[GETBITS(bl)]; | |
e = t.e; | |
while (e > 16) { | |
if (e === 99) { | |
return -1; | |
} | |
DUMPBITS(t.b); | |
e -= 16; | |
NEEDBITS(e); | |
t = t.t[GETBITS(e)]; | |
e = t.e; | |
} | |
DUMPBITS(t.b); | |
if (e === 16) { // then it's a literal | |
wp &= WSIZE - 1; | |
buff[off + n++] = slide[wp++] = t.n; | |
if (n === size) { | |
return size; | |
} | |
continue; | |
} | |
// exit if end of block | |
if (e === 15) { | |
break; | |
} | |
// it's an EOB or a length | |
// get length of block to copy | |
NEEDBITS(e); | |
copy_leng = t.n + GETBITS(e); | |
DUMPBITS(e); | |
// decode distance of block to copy | |
NEEDBITS(bd); | |
t = td.list[GETBITS(bd)]; | |
e = t.e; | |
while (e > 16) { | |
if (e === 99) { | |
return -1; | |
} | |
DUMPBITS(t.b); | |
e -= 16; | |
NEEDBITS(e); | |
t = t.t[GETBITS(e)]; | |
e = t.e; | |
} | |
DUMPBITS(t.b); | |
NEEDBITS(e); | |
copy_dist = wp - t.n - GETBITS(e); | |
DUMPBITS(e); | |
// do the copy | |
while (copy_leng > 0 && n < size) { | |
copy_leng--; | |
copy_dist &= WSIZE - 1; | |
wp &= WSIZE - 1; | |
buff[off + n++] = slide[wp++] = slide[copy_dist++]; | |
} | |
if (n === size) { | |
return size; | |
} | |
} | |
method = -1; // done | |
return n; | |
} | |
function inflate_stored(buff, off, size) { | |
/* "decompress" an inflated type 0 (stored) block. */ | |
var n; | |
// go to byte boundary | |
n = bit_len & 7; | |
DUMPBITS(n); | |
// get the length and its complement | |
NEEDBITS(16); | |
n = GETBITS(16); | |
DUMPBITS(16); | |
NEEDBITS(16); | |
if (n !== ((~bit_buf) & 0xffff)) { | |
return -1; // error in compressed data | |
} | |
DUMPBITS(16); | |
// read and output the compressed data | |
copy_leng = n; | |
n = 0; | |
while (copy_leng > 0 && n < size) { | |
copy_leng--; | |
wp &= WSIZE - 1; | |
NEEDBITS(8); | |
buff[off + n++] = slide[wp++] = GETBITS(8); | |
DUMPBITS(8); | |
} | |
if (copy_leng === 0) { | |
method = -1; // done | |
} | |
return n; | |
} | |
function inflate_fixed(buff, off, size) { | |
// decompress an inflated type 1 (fixed Huffman codes) block. We should | |
// either replace this with a custom decoder, or at least precompute the | |
// Huffman tables. | |
// if first time, set up tables for fixed blocks | |
if (!fixed_tl) { | |
var i; // temporary variable | |
var l = []; // 288 length list for huft_build (initialized below) | |
var h; // HuftBuild | |
// literal table | |
for (i = 0; i < 144; i++) { | |
l[i] = 8; | |
} | |
for (null; i < 256; i++) { | |
l[i] = 9; | |
} | |
for (null; i < 280; i++) { | |
l[i] = 7; | |
} | |
for (null; i < 288; i++) { // make a complete, but wrong code set | |
l[i] = 8; | |
} | |
fixed_bl = 7; | |
h = new HuftBuild(l, 288, 257, cplens, cplext, fixed_bl); | |
if (h.status !== 0) { | |
console.error("HufBuild error: " + h.status); | |
return -1; | |
} | |
fixed_tl = h.root; | |
fixed_bl = h.m; | |
// distance table | |
for (i = 0; i < 30; i++) { // make an incomplete code set | |
l[i] = 5; | |
} | |
fixed_bd = 5; | |
h = new HuftBuild(l, 30, 0, cpdist, cpdext, fixed_bd); | |
if (h.status > 1) { | |
fixed_tl = null; | |
console.error("HufBuild error: " + h.status); | |
return -1; | |
} | |
fixed_td = h.root; | |
fixed_bd = h.m; | |
} | |
tl = fixed_tl; | |
td = fixed_td; | |
bl = fixed_bl; | |
bd = fixed_bd; | |
return inflate_codes(buff, off, size); | |
} | |
function inflate_dynamic(buff, off, size) { | |
// decompress an inflated type 2 (dynamic Huffman codes) block. | |
var i; // temporary variables | |
var j; | |
var l; // last length | |
var n; // number of lengths to get | |
var t; // (HuftNode) literal/length code table | |
var nb; // number of bit length codes | |
var nl; // number of literal/length codes | |
var nd; // number of distance codes | |
var ll = []; | |
var h; // (HuftBuild) | |
// literal/length and distance code lengths | |
for (i = 0; i < 286 + 30; i++) { | |
ll[i] = 0; | |
} | |
// read in table lengths | |
NEEDBITS(5); | |
nl = 257 + GETBITS(5); // number of literal/length codes | |
DUMPBITS(5); | |
NEEDBITS(5); | |
nd = 1 + GETBITS(5); // number of distance codes | |
DUMPBITS(5); | |
NEEDBITS(4); | |
nb = 4 + GETBITS(4); // number of bit length codes | |
DUMPBITS(4); | |
if (nl > 286 || nd > 30) { | |
return -1; // bad lengths | |
} | |
// read in bit-length-code lengths | |
for (j = 0; j < nb; j++) { | |
NEEDBITS(3); | |
ll[border[j]] = GETBITS(3); | |
DUMPBITS(3); | |
} | |
for (null; j < 19; j++) { | |
ll[border[j]] = 0; | |
} | |
// build decoding table for trees--single level, 7 bit lookup | |
bl = 7; | |
h = new HuftBuild(ll, 19, 19, null, null, bl); | |
if (h.status !== 0) { | |
return -1; // incomplete code set | |
} | |
tl = h.root; | |
bl = h.m; | |
// read in literal and distance code lengths | |
n = nl + nd; | |
i = l = 0; | |
while (i < n) { | |
NEEDBITS(bl); | |
t = tl.list[GETBITS(bl)]; | |
j = t.b; | |
DUMPBITS(j); | |
j = t.n; | |
if (j < 16) { // length of code in bits (0..15) | |
ll[i++] = l = j; // save last length in l | |
} else if (j === 16) { // repeat last length 3 to 6 times | |
NEEDBITS(2); | |
j = 3 + GETBITS(2); | |
DUMPBITS(2); | |
if (i + j > n) { | |
return -1; | |
} | |
while (j-- > 0) { | |
ll[i++] = l; | |
} | |
} else if (j === 17) { // 3 to 10 zero length codes | |
NEEDBITS(3); | |
j = 3 + GETBITS(3); | |
DUMPBITS(3); | |
if (i + j > n) { | |
return -1; | |
} | |
while (j-- > 0) { | |
ll[i++] = 0; | |
} | |
l = 0; | |
} else { // j === 18: 11 to 138 zero length codes | |
NEEDBITS(7); | |
j = 11 + GETBITS(7); | |
DUMPBITS(7); | |
if (i + j > n) { | |
return -1; | |
} | |
while (j-- > 0) { | |
ll[i++] = 0; | |
} | |
l = 0; | |
} | |
} | |
// build the decoding tables for literal/length and distance codes | |
bl = lbits; | |
h = new HuftBuild(ll, nl, 257, cplens, cplext, bl); | |
if (bl === 0) { // no literals or lengths | |
h.status = 1; | |
} | |
if (h.status !== 0) { | |
if (h.status !== 1) { | |
return -1; // incomplete code set | |
} | |
// **incomplete literal tree** | |
} | |
tl = h.root; | |
bl = h.m; | |
for (i = 0; i < nd; i++) { | |
ll[i] = ll[i + nl]; | |
} | |
bd = dbits; | |
h = new HuftBuild(ll, nd, 0, cpdist, cpdext, bd); | |
td = h.root; | |
bd = h.m; | |
if (bd === 0 && nl > 257) { // lengths but no distances | |
// **incomplete distance tree** | |
return -1; | |
} | |
/* | |
if (h.status === 1) { | |
// **incomplete distance tree** | |
} | |
*/ | |
if (h.status !== 0) { | |
return -1; | |
} | |
// decompress until an end-of-block code | |
return inflate_codes(buff, off, size); | |
} | |
function inflate_start() { | |
if (!slide) { | |
slide = []; // new Array(2 * WSIZE); // slide.length is never called | |
} | |
wp = 0; | |
bit_buf = 0; | |
bit_len = 0; | |
method = -1; | |
eof = false; | |
copy_leng = copy_dist = 0; | |
tl = null; | |
} | |
function inflate_internal(buff, off, size) { | |
// decompress an inflated entry | |
var n, i; | |
n = 0; | |
while (n < size) { | |
if (eof && method === -1) { | |
return n; | |
} | |
if (copy_leng > 0) { | |
if (method !== STORED_BLOCK) { | |
// STATIC_TREES or DYN_TREES | |
while (copy_leng > 0 && n < size) { | |
copy_leng--; | |
copy_dist &= WSIZE - 1; | |
wp &= WSIZE - 1; | |
buff[off + n++] = slide[wp++] = slide[copy_dist++]; | |
} | |
} else { | |
while (copy_leng > 0 && n < size) { | |
copy_leng--; | |
wp &= WSIZE - 1; | |
NEEDBITS(8); | |
buff[off + n++] = slide[wp++] = GETBITS(8); | |
DUMPBITS(8); | |
} | |
if (copy_leng === 0) { | |
method = -1; // done | |
} | |
} | |
if (n === size) { | |
return n; | |
} | |
} | |
if (method === -1) { | |
if (eof) { | |
break; | |
} | |
// read in last block bit | |
NEEDBITS(1); | |
if (GETBITS(1) !== 0) { | |
eof = true; | |
} | |
DUMPBITS(1); | |
// read in block type | |
NEEDBITS(2); | |
method = GETBITS(2); | |
DUMPBITS(2); | |
tl = null; | |
copy_leng = 0; | |
} | |
switch (method) { | |
case STORED_BLOCK: | |
i = inflate_stored(buff, off + n, size - n); | |
break; | |
case STATIC_TREES: | |
if (tl) { | |
i = inflate_codes(buff, off + n, size - n); | |
} else { | |
i = inflate_fixed(buff, off + n, size - n); | |
} | |
break; | |
case DYN_TREES: | |
if (tl) { | |
i = inflate_codes(buff, off + n, size - n); | |
} else { | |
i = inflate_dynamic(buff, off + n, size - n); | |
} | |
break; | |
default: // error | |
i = -1; | |
break; | |
} | |
if (i === -1) { | |
if (eof) { | |
return 0; | |
} | |
return -1; | |
} | |
n += i; | |
} | |
return n; | |
} | |
function inflate(arr) { | |
var buff = [], i; | |
inflate_start(); | |
inflate_data = arr; | |
inflate_pos = 0; | |
do { | |
i = inflate_internal(buff, buff.length, 1024); | |
} while (i > 0); | |
inflate_data = null; // G.C. | |
return buff; | |
} | |
module.exports = inflate; |