Spaces:
Running
Running
File size: 16,647 Bytes
8f3f8db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 |
/* Smalltalk from Squeak4.5 with VMMaker 4.13.6 translated as JS source on 3 November 2014 1:52:20 pm */
/* Automatically generated by
JSPluginCodeGenerator VMMakerJS-bf.15 uuid: fd4e10f2-3773-4e80-8bb5-c4b471a014e5
from
ADPCMCodecPlugin VMMaker-bf.353 uuid: 8ae25e7e-8d2c-451e-8277-598b30e9c002
*/
(function ADPCMCodecPlugin() {
"use strict";
var VM_PROXY_MAJOR = 1;
var VM_PROXY_MINOR = 11;
/*** Functions ***/
function CLASSOF(obj) { return typeof obj === "number" ? interpreterProxy.classSmallInteger() : obj.sqClass }
function SIZEOF(obj) { return obj.pointers ? obj.pointers.length : obj.words ? obj.words.length : obj.bytes ? obj.bytes.length : 0 }
function BYTESIZEOF(obj) { return obj.bytes ? obj.bytes.length : obj.words ? obj.words.length * 4 : 0 }
function DIV(a, b) { return Math.floor(a / b) | 0; } // integer division
function MOD(a, b) { return a - DIV(a, b) * b | 0; } // signed modulus
function SHL(a, b) { return b > 31 ? 0 : a << b; } // fix JS shift
function SHR(a, b) { return b > 31 ? 0 : a >>> b; } // fix JS shift
function SHIFT(a, b) { return b < 0 ? (b < -31 ? 0 : a >>> (0-b) ) : (b > 31 ? 0 : a << b); }
/*** Variables ***/
var bitPosition = 0;
var byteIndex = 0;
var currentByte = 0;
var encodedBytes = null;
var interpreterProxy = null;
var moduleName = "ADPCMCodecPlugin 3 November 2014 (e)";
var stepSizeTable = null;
/* Note: This is coded so that plugins can be run from Squeak. */
function getInterpreter() {
return interpreterProxy;
}
/* Note: This is hardcoded so it can be run from Squeak.
The module name is used for validating a module *after*
it is loaded to check if it does really contain the module
we're thinking it contains. This is important! */
function getModuleName() {
return moduleName;
}
function halt() {
;
}
/* Answer the best index to use for the difference between the given samples. */
/* Details: Scan stepSizeTable for the first entry >= the absolute value of the difference between sample values. Since indexes are zero-based, the index used during decoding will be the one in the following stepSizeTable entry. Since the index field of a Flash frame header is only six bits, the maximum index value is 63. */
/* Note: Since there does not appear to be any documentation of how Flash actually computes the indices used in its frame headers, this algorithm was guessed by reverse-engineering the Flash ADPCM decoder. */
function indexForDeltaFromto(thisSample, nextSample) {
var bestIndex;
var diff;
var j;
diff = nextSample - thisSample;
if (diff < 0) {
diff = 0 - diff;
}
bestIndex = 63;
for (j = 1; j <= 62; j++) {
if (bestIndex === 63) {
if (stepSizeTable[j - 1] >= diff) {
bestIndex = j;
}
}
}
return bestIndex;
}
function msg(s) {
console.log(moduleName + ": " + s);
}
/* Answer the next n bits of my bit stream as an unsigned integer. */
function nextBits(n) {
var remaining;
var result;
var shift;
result = 0;
remaining = n;
while(true) {
shift = remaining - bitPosition;
if (shift > 0) {
/* consumed currentByte buffer; fetch next byte */
result += SHL(currentByte, shift);
remaining -= bitPosition;
currentByte = encodedBytes[((++byteIndex)) - 1];
bitPosition = 8;
} else {
/* still some bits left in currentByte buffer */
result += SHR(currentByte, (0 - shift));
/* mask out the consumed bits: */
bitPosition -= remaining;
currentByte = currentByte & (SHR(255, (8 - bitPosition)));
return result;
}
}
}
/* Write the next n bits to my bit stream. */
function nextBitsput(n, anInteger) {
var bitsAvailable;
var buf;
var bufBits;
var shift;
buf = anInteger;
bufBits = n;
while(true) {
bitsAvailable = 8 - bitPosition;
/* either left or right shift */
/* append high bits of buf to end of currentByte: */
shift = bitsAvailable - bufBits;
if (shift < 0) {
/* currentByte buffer filled; output it */
currentByte += SHR(buf, (0 - shift));
encodedBytes[((++byteIndex)) - 1] = currentByte;
bitPosition = 0;
/* clear saved high bits of buf: */
currentByte = 0;
buf = buf & ((SHL(1, (0 - shift))) - 1);
bufBits -= bitsAvailable;
} else {
/* still some bits available in currentByte buffer */
currentByte += SHL(buf, shift);
bitPosition += bufBits;
return self;
}
}
}
function primitiveDecodeMono() {
var rcvr;
var count;
var bit;
var delta;
var i;
var predictedDelta;
var step;
var bitsPerSample;
var deltaSignMask;
var deltaValueHighBit;
var deltaValueMask;
var frameSizeMask;
var index;
var indexTable;
var predicted;
var sampleIndex;
var samples;
rcvr = interpreterProxy.stackValue(1);
count = interpreterProxy.stackIntegerValue(0);
predicted = interpreterProxy.fetchIntegerofObject(0, rcvr);
index = interpreterProxy.fetchIntegerofObject(1, rcvr);
deltaSignMask = interpreterProxy.fetchIntegerofObject(2, rcvr);
deltaValueMask = interpreterProxy.fetchIntegerofObject(3, rcvr);
deltaValueHighBit = interpreterProxy.fetchIntegerofObject(4, rcvr);
frameSizeMask = interpreterProxy.fetchIntegerofObject(5, rcvr);
currentByte = interpreterProxy.fetchIntegerofObject(6, rcvr);
bitPosition = interpreterProxy.fetchIntegerofObject(7, rcvr);
byteIndex = interpreterProxy.fetchIntegerofObject(8, rcvr);
encodedBytes = interpreterProxy.fetchBytesofObject(9, rcvr);
samples = interpreterProxy.fetchInt16ArrayofObject(10, rcvr);
sampleIndex = interpreterProxy.fetchIntegerofObject(12, rcvr);
bitsPerSample = interpreterProxy.fetchIntegerofObject(13, rcvr);
stepSizeTable = interpreterProxy.fetchInt16ArrayofObject(14, rcvr);
indexTable = interpreterProxy.fetchInt16ArrayofObject(15, rcvr);
if (interpreterProxy.failed()) {
return null;
}
for (i = 1; i <= count; i++) {
if ((i & frameSizeMask) === 1) {
/* start of frame; read frame header */
predicted = nextBits(16);
if (predicted > 32767) {
predicted -= 65536;
}
index = nextBits(6);
samples[((++sampleIndex)) - 1] = predicted;
} else {
delta = nextBits(bitsPerSample);
step = stepSizeTable[index];
predictedDelta = 0;
bit = deltaValueHighBit;
while (bit > 0) {
if ((delta & bit) > 0) {
predictedDelta += step;
}
step = step >>> 1;
bit = bit >>> 1;
}
predictedDelta += step;
if ((delta & deltaSignMask) > 0) {
predicted -= predictedDelta;
} else {
predicted += predictedDelta;
}
if (predicted > 32767) {
predicted = 32767;
} else {
if (predicted < -32768) {
predicted = -32768;
}
}
index += indexTable[delta & deltaValueMask];
if (index < 0) {
index = 0;
} else {
if (index > 88) {
index = 88;
}
}
samples[((++sampleIndex)) - 1] = predicted;
}
}
if (interpreterProxy.failed()) {
return null;
}
interpreterProxy.storeIntegerofObjectwithValue(0, rcvr, predicted);
interpreterProxy.storeIntegerofObjectwithValue(1, rcvr, index);
interpreterProxy.storeIntegerofObjectwithValue(6, rcvr, currentByte);
interpreterProxy.storeIntegerofObjectwithValue(7, rcvr, bitPosition);
interpreterProxy.storeIntegerofObjectwithValue(8, rcvr, byteIndex);
interpreterProxy.storeIntegerofObjectwithValue(12, rcvr, sampleIndex);
interpreterProxy.pop(1);
}
function primitiveDecodeStereo() {
var rcvr;
var count;
var bit;
var deltaLeft;
var deltaRight;
var i;
var indexLeft;
var indexRight;
var predictedDeltaLeft;
var predictedDeltaRight;
var predictedLeft;
var predictedRight;
var stepLeft;
var stepRight;
var bitsPerSample;
var deltaSignMask;
var deltaValueHighBit;
var deltaValueMask;
var frameSizeMask;
var index;
var indexTable;
var predicted;
var rightSamples;
var sampleIndex;
var samples;
/* make local copies of decoder state variables */
rcvr = interpreterProxy.stackValue(1);
count = interpreterProxy.stackIntegerValue(0);
predicted = interpreterProxy.fetchInt16ArrayofObject(0, rcvr);
index = interpreterProxy.fetchInt16ArrayofObject(1, rcvr);
deltaSignMask = interpreterProxy.fetchIntegerofObject(2, rcvr);
deltaValueMask = interpreterProxy.fetchIntegerofObject(3, rcvr);
deltaValueHighBit = interpreterProxy.fetchIntegerofObject(4, rcvr);
frameSizeMask = interpreterProxy.fetchIntegerofObject(5, rcvr);
currentByte = interpreterProxy.fetchIntegerofObject(6, rcvr);
bitPosition = interpreterProxy.fetchIntegerofObject(7, rcvr);
byteIndex = interpreterProxy.fetchIntegerofObject(8, rcvr);
encodedBytes = interpreterProxy.fetchBytesofObject(9, rcvr);
samples = interpreterProxy.fetchInt16ArrayofObject(10, rcvr);
rightSamples = interpreterProxy.fetchInt16ArrayofObject(11, rcvr);
sampleIndex = interpreterProxy.fetchIntegerofObject(12, rcvr);
bitsPerSample = interpreterProxy.fetchIntegerofObject(13, rcvr);
stepSizeTable = interpreterProxy.fetchInt16ArrayofObject(14, rcvr);
indexTable = interpreterProxy.fetchInt16ArrayofObject(15, rcvr);
if (interpreterProxy.failed()) {
return null;
}
predictedLeft = predicted[1 - 1];
predictedRight = predicted[2 - 1];
indexLeft = index[1 - 1];
indexRight = index[2 - 1];
for (i = 1; i <= count; i++) {
if ((i & frameSizeMask) === 1) {
/* start of frame; read frame header */
predictedLeft = nextBits(16);
indexLeft = nextBits(6);
predictedRight = nextBits(16);
indexRight = nextBits(6);
if (predictedLeft > 32767) {
predictedLeft -= 65536;
}
if (predictedRight > 32767) {
predictedRight -= 65536;
}
samples[((++sampleIndex)) - 1] = predictedLeft;
rightSamples[sampleIndex - 1] = predictedRight;
} else {
deltaLeft = nextBits(bitsPerSample);
deltaRight = nextBits(bitsPerSample);
stepLeft = stepSizeTable[indexLeft];
stepRight = stepSizeTable[indexRight];
predictedDeltaLeft = (predictedDeltaRight = 0);
bit = deltaValueHighBit;
while (bit > 0) {
if ((deltaLeft & bit) > 0) {
predictedDeltaLeft += stepLeft;
}
if ((deltaRight & bit) > 0) {
predictedDeltaRight += stepRight;
}
stepLeft = stepLeft >>> 1;
stepRight = stepRight >>> 1;
bit = bit >>> 1;
}
predictedDeltaLeft += stepLeft;
predictedDeltaRight += stepRight;
if ((deltaLeft & deltaSignMask) > 0) {
predictedLeft -= predictedDeltaLeft;
} else {
predictedLeft += predictedDeltaLeft;
}
if ((deltaRight & deltaSignMask) > 0) {
predictedRight -= predictedDeltaRight;
} else {
predictedRight += predictedDeltaRight;
}
if (predictedLeft > 32767) {
predictedLeft = 32767;
} else {
if (predictedLeft < -32768) {
predictedLeft = -32768;
}
}
if (predictedRight > 32767) {
predictedRight = 32767;
} else {
if (predictedRight < -32768) {
predictedRight = -32768;
}
}
indexLeft += indexTable[deltaLeft & deltaValueMask];
if (indexLeft < 0) {
indexLeft = 0;
} else {
if (indexLeft > 88) {
indexLeft = 88;
}
}
indexRight += indexTable[deltaRight & deltaValueMask];
if (indexRight < 0) {
indexRight = 0;
} else {
if (indexRight > 88) {
indexRight = 88;
}
}
samples[((++sampleIndex)) - 1] = predictedLeft;
rightSamples[sampleIndex - 1] = predictedRight;
}
}
predicted[1 - 1] = predictedLeft;
predicted[2 - 1] = predictedRight;
index[1 - 1] = indexLeft;
index[2 - 1] = indexRight;
if (interpreterProxy.failed()) {
return null;
}
interpreterProxy.storeIntegerofObjectwithValue(6, rcvr, currentByte);
interpreterProxy.storeIntegerofObjectwithValue(7, rcvr, bitPosition);
interpreterProxy.storeIntegerofObjectwithValue(8, rcvr, byteIndex);
interpreterProxy.storeIntegerofObjectwithValue(12, rcvr, sampleIndex);
interpreterProxy.pop(1);
}
function primitiveEncodeMono() {
var rcvr;
var count;
var bit;
var delta;
var diff;
var i;
var p;
var predictedDelta;
var sign;
var step;
var bitsPerSample;
var deltaSignMask;
var deltaValueHighBit;
var frameSizeMask;
var index;
var indexTable;
var predicted;
var sampleIndex;
var samples;
rcvr = interpreterProxy.stackValue(1);
count = interpreterProxy.stackIntegerValue(0);
predicted = interpreterProxy.fetchIntegerofObject(0, rcvr);
index = interpreterProxy.fetchIntegerofObject(1, rcvr);
deltaSignMask = interpreterProxy.fetchIntegerofObject(2, rcvr);
deltaValueHighBit = interpreterProxy.fetchIntegerofObject(4, rcvr);
frameSizeMask = interpreterProxy.fetchIntegerofObject(5, rcvr);
currentByte = interpreterProxy.fetchIntegerofObject(6, rcvr);
bitPosition = interpreterProxy.fetchIntegerofObject(7, rcvr);
byteIndex = interpreterProxy.fetchIntegerofObject(8, rcvr);
encodedBytes = interpreterProxy.fetchBytesofObject(9, rcvr);
samples = interpreterProxy.fetchInt16ArrayofObject(10, rcvr);
sampleIndex = interpreterProxy.fetchIntegerofObject(12, rcvr);
bitsPerSample = interpreterProxy.fetchIntegerofObject(13, rcvr);
stepSizeTable = interpreterProxy.fetchInt16ArrayofObject(14, rcvr);
indexTable = interpreterProxy.fetchInt16ArrayofObject(15, rcvr);
if (interpreterProxy.failed()) {
return null;
}
step = stepSizeTable[1 - 1];
for (i = 1; i <= count; i++) {
if ((i & frameSizeMask) === 1) {
predicted = samples[((++sampleIndex)) - 1];
if (((p = predicted)) < 0) {
p += 65536;
}
nextBitsput(16, p);
if (i < count) {
index = indexForDeltaFromto(predicted, samples[sampleIndex]);
}
nextBitsput(6, index);
} else {
/* compute sign and magnitude of difference from the predicted sample */
sign = 0;
diff = samples[((++sampleIndex)) - 1] - predicted;
if (diff < 0) {
sign = deltaSignMask;
diff = 0 - diff;
}
delta = 0;
predictedDelta = 0;
bit = deltaValueHighBit;
while (bit > 0) {
if (diff >= step) {
delta += bit;
predictedDelta += step;
diff -= step;
}
step = step >>> 1;
bit = bit >>> 1;
}
/* compute and clamp new prediction */
predictedDelta += step;
if (sign > 0) {
predicted -= predictedDelta;
} else {
predicted += predictedDelta;
}
if (predicted > 32767) {
predicted = 32767;
} else {
if (predicted < -32768) {
predicted = -32768;
}
}
index += indexTable[delta];
if (index < 0) {
index = 0;
} else {
if (index > 88) {
index = 88;
}
}
/* output encoded, signed delta */
step = stepSizeTable[index];
nextBitsput(bitsPerSample, sign | delta);
}
}
if (bitPosition > 0) {
/* flush the last output byte, if necessary */
encodedBytes[((++byteIndex)) - 1] = currentByte;
}
if (interpreterProxy.failed()) {
return null;
}
interpreterProxy.storeIntegerofObjectwithValue(0, rcvr, predicted);
interpreterProxy.storeIntegerofObjectwithValue(1, rcvr, index);
interpreterProxy.storeIntegerofObjectwithValue(6, rcvr, currentByte);
interpreterProxy.storeIntegerofObjectwithValue(7, rcvr, bitPosition);
interpreterProxy.storeIntegerofObjectwithValue(8, rcvr, byteIndex);
interpreterProxy.storeIntegerofObjectwithValue(12, rcvr, sampleIndex);
interpreterProxy.pop(1);
}
/* not yet implemented */
function primitiveEncodeStereo() {
var rcvr;
var count;
rcvr = interpreterProxy.stackValue(1);
count = interpreterProxy.stackIntegerValue(0);
currentByte = interpreterProxy.fetchIntegerofObject(6, rcvr);
bitPosition = interpreterProxy.fetchIntegerofObject(7, rcvr);
byteIndex = interpreterProxy.fetchIntegerofObject(8, rcvr);
encodedBytes = interpreterProxy.fetchIntegerofObject(9, rcvr);
stepSizeTable = interpreterProxy.fetchIntegerofObject(14, rcvr);
if (interpreterProxy.failed()) {
return null;
}
success(false);
if (interpreterProxy.failed()) {
return null;
}
interpreterProxy.storeIntegerofObjectwithValue(6, rcvr, currentByte);
interpreterProxy.storeIntegerofObjectwithValue(7, rcvr, bitPosition);
interpreterProxy.storeIntegerofObjectwithValue(8, rcvr, byteIndex);
interpreterProxy.pop(1);
}
/* Note: This is coded so that is can be run from Squeak. */
function setInterpreter(anInterpreter) {
var ok;
interpreterProxy = anInterpreter;
ok = interpreterProxy.majorVersion() == VM_PROXY_MAJOR;
if (ok === false) {
return false;
}
ok = interpreterProxy.minorVersion() >= VM_PROXY_MINOR;
return ok;
}
function registerPlugin() {
if (typeof Squeak === "object" && Squeak.registerExternalModule) {
Squeak.registerExternalModule("ADPCMCodecPlugin", {
primitiveDecodeStereo: primitiveDecodeStereo,
primitiveEncodeStereo: primitiveEncodeStereo,
setInterpreter: setInterpreter,
primitiveEncodeMono: primitiveEncodeMono,
primitiveDecodeMono: primitiveDecodeMono,
getModuleName: getModuleName,
});
} else self.setTimeout(registerPlugin, 100);
}
registerPlugin();
})(); // Register module/plugin
|