Spaces:
Running
Running
File size: 24,439 Bytes
8f3f8db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 |
/* Smalltalk from Squeak4.5 with VMMaker 4.13.6 translated as JS source on 3 November 2014 1:52:21 pm */
/* Automatically generated by
JSPluginCodeGenerator VMMakerJS-bf.15 uuid: fd4e10f2-3773-4e80-8bb5-c4b471a014e5
from
KlattSynthesizerPlugin VMMaker-bf.353 uuid: 8ae25e7e-8d2c-451e-8277-598b30e9c002
*/
(function Klatt() {
"use strict";
var VM_PROXY_MAJOR = 1;
var VM_PROXY_MINOR = 11;
/*** Functions ***/
function CLASSOF(obj) { return typeof obj === "number" ? interpreterProxy.classSmallInteger() : obj.sqClass }
function SIZEOF(obj) { return obj.pointers ? obj.pointers.length : obj.words ? obj.words.length : obj.bytes ? obj.bytes.length : 0 }
function BYTESIZEOF(obj) { return obj.bytes ? obj.bytes.length : obj.words ? obj.words.length * 4 : 0 }
function DIV(a, b) { return Math.floor(a / b) | 0; } // integer division
function MOD(a, b) { return a - DIV(a, b) * b | 0; } // signed modulus
function SHL(a, b) { return b > 31 ? 0 : a << b; } // fix JS shift
function SHR(a, b) { return b > 31 ? 0 : a >>> b; } // fix JS shift
function SHIFT(a, b) { return b < 0 ? (b < -31 ? 0 : a >>> (0-b) ) : (b > 31 ? 0 : a << b); }
/*** Constants ***/
var A1v = 46;
var A2f = 34;
var A2v = 47;
var A3f = 35;
var A3v = 48;
var A4f = 36;
var A4v = 49;
var A5f = 37;
var A6f = 38;
var Anv = 45;
var Aspiration = 9;
var Atv = 50;
var B1 = 13;
var B2 = 17;
var B2f = 40;
var B3 = 19;
var B3f = 41;
var B4 = 21;
var B4f = 42;
var B5 = 23;
var B5f = 43;
var B6 = 25;
var B6f = 44;
var Bnp = 27;
var Bnz = 29;
var Btp = 31;
var Btz = 33;
var Bypass = 39;
var Diplophonia = 4;
var Epsilon = 0.0001;
var F0 = 0;
var F1 = 12;
var F2 = 16;
var F3 = 18;
var F4 = 20;
var F5 = 22;
var F6 = 24;
var Flutter = 1;
var Fnp = 26;
var Fnz = 28;
var Friction = 10;
var Ftp = 30;
var Ftz = 32;
var Gain = 51;
var Jitter = 2;
var PI = 3.141592653589793;
var R1c = 12;
var R1vp = 3;
var R2c = 13;
var R2fp = 7;
var R2vp = 4;
var R3c = 14;
var R3fp = 8;
var R3vp = 5;
var R4c = 15;
var R4fp = 9;
var R4vp = 6;
var R5c = 16;
var R5fp = 10;
var R6c = 17;
var R6fp = 11;
var R7c = 18;
var R8c = 19;
var Ra = 7;
var Rk = 8;
var Rnpc = 20;
var Rnpp = 1;
var Rnz = 21;
var Ro = 6;
var Rout = 24;
var Rtpc = 22;
var Rtpp = 2;
var Rtz = 23;
var Shimmer = 3;
var Turbulence = 11;
var Voicing = 5;
/*** Variables ***/
var a1 = 0;
var a2 = 0;
var b1 = 0;
var c1 = 0;
var cascade = 0;
var frame = null;
var glast = 0;
var interpreterProxy = null;
var moduleName = "Klatt 3 November 2014 (e)";
var nlast = 0;
var nmod = 0;
var nopen = 0;
var nper = 0;
var periodCount = 0;
var pitch = 0;
var resonators = null;
var samplesCount = 0;
var samplesPerFrame = 0;
var samplingRate = 0;
var seed = 0;
var t0 = 0;
var vlast = 0;
var x1 = 0;
var x2 = 0;
/* Add diplophonia (bicyclic voice). Change voicing amplitude. */
function addAmplitudeDiplophonia() {
if ((MOD(periodCount, 2)) !== 0) {
/* x1 must be <= 0 */
x1 = x1 * (1.0 - frame[Diplophonia]);
if (x1 > 0) {
x1 = 0;
}
}
}
/* Add F0 flutter, as specified in:
'Analysis, synthesis and perception of voice quality variations among
female and male talkers' D.H. Klatt and L.C. Klatt JASA 87(2) February 1990.
Flutter is added by applying a quasi-random element constructed from three
slowly varying sine waves. */
function addFlutter() {
var asin;
var bsin;
var csin;
var deltaF0;
var timeCount;
timeCount = samplesCount / samplingRate;
asin = Math.sin(((2.0 * PI) * 12.7) * timeCount);
bsin = Math.sin(((2.0 * PI) * 7.1) * timeCount);
csin = Math.sin(((2.0 * PI) * 4.7) * timeCount);
deltaF0 = (((frame[Flutter] * 2.0) * frame[F0]) / 100.0) * ((asin + bsin) + csin);
pitch += deltaF0;
}
/* Add diplophonia (bicyclic voice). Change F0. */
function addFrequencyDiplophonia() {
if ((MOD(periodCount, 2)) === 0) {
pitch += (frame[Diplophonia] * frame[F0]) * (1.0 - frame[Ro]);
} else {
pitch -= (frame[Diplophonia] * frame[F0]) * (1.0 - frame[Ro]);
}
}
/* Add jitter (random F0 perturbation). */
function addJitter() {
pitch += (((nextRandom() - 32767) * frame[Jitter]) / 32768.0) * frame[F0];
}
/* Add shimmer (random voicing amplitude perturbation). */
function addShimmer() {
/* x1 must be <= 0 */
x1 += (((nextRandom() - 32767) * frame[Shimmer]) / 32768.0) * x1;
if (x1 > 0) {
x1 = 0;
}
}
/* Set up an anti-resonator */
function antiResonatorfrequencybandwidth(index, freq, bw) {
var a;
var arg;
var b;
var c;
var r;
arg = ((0.0 - PI) / samplingRate) * bw;
r = Math.exp(arg);
c = 0.0 - (r * r);
arg = ((PI * 2.0) / samplingRate) * freq;
b = (r * Math.cos(arg)) * 2.0;
a = (1.0 - b) - c;
a = 1.0 / a;
b = (0.0 - b) * a;
c = (0.0 - c) * a;
resonatorAput(index, a);
resonatorBput(index, b);
resonatorCput(index, c);
}
function antiResonatorvalue(index, aFloat) {
var answer;
var p1;
answer = ((resonatorA(index) * aFloat) + (resonatorB(index) * ((p1 = resonatorP1(index))))) + (resonatorC(index) * resonatorP2(index));
resonatorP2put(index, p1);
resonatorP1put(index, aFloat);
return answer;
}
/* Cascade vocal tract, excited by laryngeal sources.
Nasal antiresonator, nasal resonator, tracheal antirresonator,
tracheal resonator, then formants F8, F7, F6, F5, F4, F3, F2, F1. */
function cascadeBranch(source) {
var out;
if (!(cascade > 0)) {
return 0.0;
}
out = antiResonatorvalue(Rnz, source);
out = resonatorvalue(Rnpc, out);
out = antiResonatorvalue(Rtz, out);
/* Do not use unless sample rate >= 16000 */
out = resonatorvalue(Rtpc, out);
if (cascade >= 8) {
out = resonatorvalue(R8c, out);
}
if (cascade >= 7) {
out = resonatorvalue(R7c, out);
}
if (cascade >= 6) {
out = resonatorvalue(R6c, out);
}
if (cascade >= 5) {
out = resonatorvalue(R5c, out);
}
if (cascade >= 4) {
out = resonatorvalue(R4c, out);
}
if (cascade >= 3) {
out = resonatorvalue(R3c, out);
}
if (cascade >= 2) {
out = resonatorvalue(R2c, out);
}
if (cascade >= 1) {
out = resonatorvalue(R1c, out);
}
return out;
}
/* Return the first indexable word of oop which is assumed to be variableWordSubclass */
function checkedFloatPtrOf(oop) {
interpreterProxy.success(interpreterProxy.isWords(oop));
if (interpreterProxy.failed()) {
return 0;
}
return oop.wordsAsFloat32Array();
}
/* Return the first indexable word of oop which is assumed to be variableWordSubclass */
function checkedShortPtrOf(oop) {
interpreterProxy.success(interpreterProxy.isWords(oop));
if (interpreterProxy.failed()) {
return 0;
}
return oop.wordsAsInt16Array();
}
/* Note: This is hardcoded so it can be run from Squeak.
The module name is used for validating a module *after*
it is loaded to check if it does really contain the module
we're thinking it contains. This is important! */
function getModuleName() {
return moduleName;
}
function glottalSource() {
var x0;
if (t0 === 0) {
return 0;
}
if (nper < nopen) {
x0 = (a1 * x1) + (a2 * x2);
x2 = x1;
x1 = x0;
} else {
x0 = (b1 * x1) - c1;
x1 = x0;
}
if (nper >= t0) {
nper = 0;
pitchSynchronousReset();
}
++nper;
return x0;
}
function halt() {
;
}
function linearFromdB(aNumber) {
return Math.pow(2.0,((aNumber - 87.0) / 6.0)) * 32.767;
}
function loadFrom(klattOop) {
var oop;
interpreterProxy.success(SIZEOF(klattOop) === 22);
if (interpreterProxy.failed()) {
return false;
}
oop = interpreterProxy.fetchPointerofObject(0, klattOop);
resonators = checkedFloatPtrOf(oop);
pitch = interpreterProxy.fetchFloatofObject(2, klattOop);
t0 = interpreterProxy.fetchIntegerofObject(3, klattOop);
nper = interpreterProxy.fetchIntegerofObject(4, klattOop);
nopen = interpreterProxy.fetchIntegerofObject(5, klattOop);
nmod = interpreterProxy.fetchIntegerofObject(6, klattOop);
a1 = interpreterProxy.fetchFloatofObject(7, klattOop);
a2 = interpreterProxy.fetchFloatofObject(8, klattOop);
x1 = interpreterProxy.fetchFloatofObject(9, klattOop);
x2 = interpreterProxy.fetchFloatofObject(10, klattOop);
b1 = interpreterProxy.fetchFloatofObject(11, klattOop);
c1 = interpreterProxy.fetchFloatofObject(12, klattOop);
glast = interpreterProxy.fetchFloatofObject(13, klattOop);
vlast = interpreterProxy.fetchFloatofObject(14, klattOop);
nlast = interpreterProxy.fetchFloatofObject(15, klattOop);
periodCount = interpreterProxy.fetchIntegerofObject(16, klattOop);
samplesCount = interpreterProxy.fetchIntegerofObject(17, klattOop);
seed = interpreterProxy.fetchIntegerofObject(18, klattOop);
cascade = interpreterProxy.fetchIntegerofObject(19, klattOop);
samplesPerFrame = interpreterProxy.fetchIntegerofObject(20, klattOop);
samplingRate = interpreterProxy.fetchIntegerofObject(21, klattOop);
return interpreterProxy.failed() === false;
}
/* Answer a random number between 0 and 65535. */
function nextRandom() {
seed = ((seed * 1309) + 13849) & 65535;
return seed;
}
function normalizeGlottalPulse() {
var ingore;
var s0;
var s1;
var s2;
s0 = 0.0;
s1 = x1;
s2 = x2;
for (ingore = 1; ingore <= nopen; ingore++) {
s0 = (a1 * s1) + (a2 * s2);
s2 = s1;
s1 = s0;
}
if (s0 !== 0.0) {
x1 = (x1 / s0) * 10000.0;
}
}
/* Friction-excited parallel vocal tract formants F6, F5, F4, F3, F2,
outputs added with alternating sign. Sound source for other
parallel resonators is friction plus first difference of
voicing waveform. */
function parallelFrictionBranch(source) {
return (((resonatorvalue(R2fp, source) - resonatorvalue(R3fp, source)) + resonatorvalue(R4fp, source)) - resonatorvalue(R5fp, source)) + resonatorvalue(R6fp, source);
}
/* Voice-excited parallel vocal tract F1, F2, F3, F4, FNP and FTP. */
function parallelVoicedBranch(source) {
return ((((resonatorvalue(R1vp, source) + resonatorvalue(R2vp, source)) + resonatorvalue(R3vp, source)) + resonatorvalue(R4vp, source)) + resonatorvalue(Rnpp, source)) + resonatorvalue(Rtpp, source);
}
function pitchSynchronousReset() {
if (frame[F0] > 0) {
voicedPitchSynchronousReset();
periodCount = MOD((periodCount + 1), 65535);
} else {
t0 = 1;
nmod = t0;
}
}
function primitiveSynthesizeFrameIntoStartingAt() {
var aKlattFrame;
var buffer;
var bufferOop;
var rcvr;
var startIndex;
aKlattFrame = checkedFloatPtrOf(interpreterProxy.stackValue(2));
buffer = checkedShortPtrOf((bufferOop = interpreterProxy.stackValue(1)));
startIndex = interpreterProxy.stackIntegerValue(0);
if (interpreterProxy.failed()) {
return null;
}
rcvr = interpreterProxy.stackObjectValue(3);
if (!loadFrom(rcvr)) {
return null;
}
interpreterProxy.success((SIZEOF(bufferOop) * 2) >= samplesPerFrame);
if (interpreterProxy.failed()) {
return null;
}
synthesizeFrameintostartingAt(aKlattFrame, buffer, startIndex);
if (!saveTo(rcvr)) {
return null;
}
interpreterProxy.pop(3);
}
function quphicosphisinphirphid(u, phi, cosphi, sinphi, rphid) {
var expuphi;
expuphi = Math.exp(u * phi);
return (expuphi * ((((rphid * ((u * u) + 1.0)) + u) * sinphi) - cosphi)) + 1.0;
}
/* Convert formant frequencies and bandwidth into
resonator difference equation coefficients. */
function resonatorfrequencybandwidth(index, freq, bw) {
var a;
var arg;
var b;
var c;
var r;
arg = ((0.0 - PI) / samplingRate) * bw;
r = Math.exp(arg);
c = 0.0 - (r * r);
arg = ((PI * 2.0) / samplingRate) * freq;
b = (r * Math.cos(arg)) * 2.0;
a = (1.0 - b) - c;
resonatorAput(index, a);
resonatorBput(index, b);
resonatorCput(index, c);
}
/* Convert formant frequencies and bandwidth into
resonator difference equation coefficients. */
function resonatorfrequencybandwidthgain(index, freq, bw, gain) {
resonatorfrequencybandwidth(index, freq, bw);
resonatorAput(index, resonatorA(index) * gain);
}
function resonatorvalue(index, aFloat) {
var answer;
var p1;
/* (p1 between: -100000 and: 100000) ifFalse: [self halt].
(answer between: -100000 and: 100000) ifFalse: [self halt]. */
answer = ((resonatorA(index) * aFloat) + (resonatorB(index) * ((p1 = resonatorP1(index))))) + (resonatorC(index) * resonatorP2(index));
resonatorP2put(index, p1);
resonatorP1put(index, answer);
return answer;
}
function resonatorA(index) {
return resonators[(index * 5) - 5];
}
function resonatorAput(index, aFloat) {
resonators[(index * 5) - 5] = aFloat;
}
function resonatorB(index) {
return resonators[(index * 5) - 4];
}
function resonatorBput(index, aFloat) {
resonators[(index * 5) - 4] = aFloat;
}
function resonatorC(index) {
return resonators[(index * 5) - 3];
}
function resonatorCput(index, aFloat) {
resonators[(index * 5) - 3] = aFloat;
}
function resonatorP1(index) {
return resonators[(index * 5) - 2];
}
function resonatorP1put(index, aFloat) {
resonators[(index * 5) - 2] = aFloat;
}
function resonatorP2(index) {
return resonators[(index * 5) - 1];
}
function resonatorP2put(index, aFloat) {
resonators[(index * 5) - 1] = aFloat;
}
function rorark(roNumber, raNumber, rkNumber) {
var cosphi;
var d;
var gamma;
var gammapwr;
var phi;
var r;
var ra;
var rho;
var rk;
var ro;
var rphid;
var sinphi;
var te;
var theta;
var u;
te = ((t0 * roNumber)|0);
ro = te / t0;
rk = rkNumber;
ra = raNumber;
if (ra <= 0.0) {
d = 1.0;
} else {
r = (1.0 - ro) / ra;
d = 1.0 - (r / (Math.exp(r) - 1.0));
}
phi = PI * (rk + 1.0);
cosphi = Math.cos(phi);
sinphi = Math.sin(phi);
rphid = ((ra / ro) * phi) * d;
u = zeroQphicosphisinphirphid(phi, cosphi, sinphi, rphid);
theta = phi / te;
rho = Math.exp(u * theta);
a1 = (2.0 * Math.cos(theta)) * rho;
a2 = 0.0 - (rho * rho);
x2 = 0.0;
x1 = rho * Math.sin(theta);
gamma = Math.exp(-1.0 / (ra * t0));
gammapwr = Math.pow(gamma,(t0 - te));
b1 = gamma;
c1 = ((1.0 - gamma) * gammapwr) / (1.0 - gammapwr);
normalizeGlottalPulse();
}
function saveTo(origKlattOop) {
var a1Oop;
var a2Oop;
var b1Oop;
var c1Oop;
var glastOop;
var klattOop;
var nlastOop;
var pitchOop;
var vlastOop;
var x1Oop;
var x2Oop;
interpreterProxy.pushRemappableOop(origKlattOop);
interpreterProxy.pushRemappableOop(interpreterProxy.floatObjectOf(pitch));
interpreterProxy.pushRemappableOop(interpreterProxy.floatObjectOf(a1));
interpreterProxy.pushRemappableOop(interpreterProxy.floatObjectOf(a2));
interpreterProxy.pushRemappableOop(interpreterProxy.floatObjectOf(x1));
interpreterProxy.pushRemappableOop(interpreterProxy.floatObjectOf(x2));
interpreterProxy.pushRemappableOop(interpreterProxy.floatObjectOf(b1));
interpreterProxy.pushRemappableOop(interpreterProxy.floatObjectOf(c1));
interpreterProxy.pushRemappableOop(interpreterProxy.floatObjectOf(glast));
interpreterProxy.pushRemappableOop(interpreterProxy.floatObjectOf(vlast));
nlastOop = interpreterProxy.floatObjectOf(nlast);
vlastOop = interpreterProxy.popRemappableOop();
glastOop = interpreterProxy.popRemappableOop();
c1Oop = interpreterProxy.popRemappableOop();
b1Oop = interpreterProxy.popRemappableOop();
x2Oop = interpreterProxy.popRemappableOop();
x1Oop = interpreterProxy.popRemappableOop();
a2Oop = interpreterProxy.popRemappableOop();
a1Oop = interpreterProxy.popRemappableOop();
pitchOop = interpreterProxy.popRemappableOop();
klattOop = interpreterProxy.popRemappableOop();
if (interpreterProxy.failed()) {
return false;
}
interpreterProxy.storePointerofObjectwithValue(2, klattOop, pitchOop);
interpreterProxy.storeIntegerofObjectwithValue(3, klattOop, t0);
interpreterProxy.storeIntegerofObjectwithValue(4, klattOop, nper);
interpreterProxy.storeIntegerofObjectwithValue(5, klattOop, nopen);
interpreterProxy.storeIntegerofObjectwithValue(6, klattOop, nmod);
interpreterProxy.storePointerofObjectwithValue(7, klattOop, a1Oop);
interpreterProxy.storePointerofObjectwithValue(8, klattOop, a2Oop);
interpreterProxy.storePointerofObjectwithValue(9, klattOop, x1Oop);
interpreterProxy.storePointerofObjectwithValue(10, klattOop, x2Oop);
interpreterProxy.storePointerofObjectwithValue(11, klattOop, b1Oop);
interpreterProxy.storePointerofObjectwithValue(12, klattOop, c1Oop);
interpreterProxy.storePointerofObjectwithValue(13, klattOop, glastOop);
interpreterProxy.storePointerofObjectwithValue(14, klattOop, vlastOop);
interpreterProxy.storePointerofObjectwithValue(15, klattOop, nlastOop);
interpreterProxy.storeIntegerofObjectwithValue(16, klattOop, periodCount);
interpreterProxy.storeIntegerofObjectwithValue(17, klattOop, samplesCount);
interpreterProxy.storeIntegerofObjectwithValue(18, klattOop, seed);
return interpreterProxy.failed() === false;
}
function setCurrentFrame(aKlattFrame) {
var ampF1V;
var ampF2F;
var ampF2V;
var ampF3F;
var ampF3V;
var ampF4F;
var ampF4V;
var ampF5F;
var ampF6F;
var ampFNV;
var ampFTV;
/* Fudge factors... */
frame = aKlattFrame;
/* -4.44 dB */
ampFNV = linearFromdB(frame[Anv]) * 0.6;
/* -4.44 dB */
ampFTV = linearFromdB(frame[Atv]) * 0.6;
/* -7.96 dB */
ampF1V = linearFromdB(frame[A1v]) * 0.4;
/* -16.5 dB */
ampF2V = linearFromdB(frame[A2v]) * 0.15;
/* -24.4 dB */
ampF3V = linearFromdB(frame[A3v]) * 0.06;
/* -28.0 dB */
ampF4V = linearFromdB(frame[A4v]) * 0.04;
/* -16.5 dB */
ampF2F = linearFromdB(frame[A2f]) * 0.15;
/* -24.4 dB */
ampF3F = linearFromdB(frame[A3f]) * 0.06;
/* -28.0 dB */
ampF4F = linearFromdB(frame[A4f]) * 0.04;
/* -33.2 dB */
ampF5F = linearFromdB(frame[A5f]) * 0.022;
/* -30.5 dB */
/* Set coefficients of variable cascade resonators */
ampF6F = linearFromdB(frame[A6f]) * 0.03;
if (cascade >= 8) {
if (samplingRate >= 16000) {
/* Inside Nyquist rate? */
resonatorfrequencybandwidth(R8c, 7500, 600);
} else {
cascade = 6;
}
}
if (cascade >= 7) {
if (samplingRate >= 16000) {
/* Inside Nyquist rate? */
resonatorfrequencybandwidth(R7c, 6500, 500);
} else {
cascade = 6;
}
}
if (cascade >= 6) {
resonatorfrequencybandwidth(R6c, frame[F6], frame[B6]);
}
if (cascade >= 5) {
resonatorfrequencybandwidth(R5c, frame[F5], frame[B5]);
}
resonatorfrequencybandwidth(R4c, frame[F4], frame[B4]);
resonatorfrequencybandwidth(R3c, frame[F3], frame[B3]);
resonatorfrequencybandwidth(R2c, frame[F2], frame[B2]);
resonatorfrequencybandwidth(R1c, frame[F1], frame[B1]);
resonatorfrequencybandwidth(Rnpc, frame[Fnp], frame[Bnp]);
resonatorfrequencybandwidth(Rtpc, frame[Ftp], frame[Btp]);
antiResonatorfrequencybandwidth(Rnz, frame[Fnz], frame[Bnz]);
antiResonatorfrequencybandwidth(Rtz, frame[Ftz], frame[Btz]);
resonatorfrequencybandwidthgain(Rnpp, frame[Fnp], frame[Bnp], ampFNV);
resonatorfrequencybandwidthgain(Rtpp, frame[Ftp], frame[Btp], ampFTV);
resonatorfrequencybandwidthgain(R1vp, frame[F1], frame[B1], ampF1V);
resonatorfrequencybandwidthgain(R2vp, frame[F2], frame[B2], ampF2V);
resonatorfrequencybandwidthgain(R3vp, frame[F3], frame[B3], ampF3V);
resonatorfrequencybandwidthgain(R4vp, frame[F4], frame[B4], ampF4V);
resonatorfrequencybandwidthgain(R2fp, frame[F2], frame[B2f], ampF2F);
resonatorfrequencybandwidthgain(R3fp, frame[F3], frame[B3f], ampF3F);
resonatorfrequencybandwidthgain(R4fp, frame[F4], frame[B4f], ampF4F);
resonatorfrequencybandwidthgain(R5fp, frame[F5], frame[B5f], ampF5F);
resonatorfrequencybandwidthgain(R6fp, frame[F6], frame[B6f], ampF6F);
}
/* Note: This is coded so that is can be run from Squeak. */
function setInterpreter(anInterpreter) {
var ok;
interpreterProxy = anInterpreter;
ok = interpreterProxy.majorVersion() == VM_PROXY_MAJOR;
if (ok === false) {
return false;
}
ok = interpreterProxy.minorVersion() >= VM_PROXY_MINOR;
return ok;
}
function synthesizeFrameintostartingAt(aKlattFrame, buffer, startIndex) {
var ampGain;
var aspiration;
var aspirationNoise;
var bypass;
var friction;
var frictionNoise;
var gain;
var glotout;
var index;
var noise;
var out;
var parGlotout;
var parVoicing;
var source;
var temp;
var top;
var turbulence;
var voice;
var voicing;
setCurrentFrame(aKlattFrame);
if (pitch > 0) {
voicing = linearFromdB(frame[Voicing] - 7);
parVoicing = linearFromdB(frame[Voicing]);
turbulence = linearFromdB(frame[Turbulence]) * 0.1;
} else {
voicing = (parVoicing = (turbulence = 0.0));
}
friction = linearFromdB(frame[Friction]) * 0.25;
aspiration = linearFromdB(frame[Aspiration]) * 0.05;
/* -26.0 dB */
/* Flod overall gain into output resonator (low-pass filter) */
bypass = linearFromdB(frame[Bypass]) * 0.05;
gain = frame[Gain] - 3;
if (gain <= 0) {
gain = 57;
}
ampGain = linearFromdB(gain);
resonatorfrequencybandwidthgain(Rout, 0, samplingRate, ampGain);
noise = nlast;
index = startIndex;
top = (samplesPerFrame + startIndex) - 1;
while (index <= top) {
/* Get low-passed random number for aspiration and friction noise */
/* radom number between -8196.0 and 8196.0 */
/* Tilt down noise spectrum by soft low-pass filter having
a pole near the origin in the z-plane. */
noise = (nextRandom() - 32768) / 4.0;
noise += 0.75 * nlast;
/* Amplitude modulate noise (reduce noise amplitude during second
half of glottal period) if voicing simultaneously present. */
nlast = noise;
if (nper > nmod) {
noise = noise * 0.5;
}
/* Compute voicing waveform. */
frictionNoise = friction * noise;
voice = glottalSource();
/* Add turbulence during glottal open phase.
Use random rather than noise because noise is low-passed. */
vlast = voice;
if (nper < nopen) {
voice += (turbulence * (nextRandom() - 32768)) / 4.0;
}
glotout = voicing * voice;
/* Compute aspiration amplitude and add to voicing source. */
parGlotout = parVoicing * voice;
aspirationNoise = aspiration * noise;
glotout += aspirationNoise;
/* Cascade vocal tract, excited by laryngeal sources.
Nasal antiresonator, nasal resonator, trachearl antirresonator,
tracheal resonator, then formants F8, F7, F6, F5, F4, F3, F2, F1. */
parGlotout += aspirationNoise;
/* Voice-excited parallel vocal tract F1, F2, F3, F4, FNP and FTP. */
out = cascadeBranch(glotout);
/* Source is voicing plus aspiration. */
source = parGlotout;
/* Friction-excited parallel vocal tract formants F6, F5, F4, F3, F2,
outputs added with alternating sign. Sound source for other
parallel resonators is friction plus first difference of
voicing waveform. */
out += parallelVoicedBranch(source);
source = (frictionNoise + parGlotout) - glast;
glast = parGlotout;
/* Apply bypas and output low-pass filter */
out = parallelFrictionBranch(source) - out;
out = (bypass * source) - out;
out = resonatorvalue(Rout, out);
temp = ((out * ampGain)|0);
if (temp < -32768) {
temp = -32768;
}
if (temp > 32767) {
temp = 32767;
}
buffer[index - 1] = temp;
++index;
++samplesCount;
}
}
/* Set the pitch. */
function voicedPitchSynchronousReset() {
/* Add flutter and jitter (F0 perturbations). */
pitch = frame[F0];
addFlutter();
addJitter();
addFrequencyDiplophonia();
if (pitch < 0) {
pitch = 0;
}
/* Duration of period before amplitude modulation. */
t0 = ((samplingRate / pitch)|0);
nmod = t0;
if (frame[Voicing] > 0) {
nmod = nmod >> 1;
}
/* Set the LF glottal pulse model parameters. */
nopen = ((t0 * frame[Ro])|0);
rorark(frame[Ro], frame[Ra], frame[Rk]);
addShimmer();
addAmplitudeDiplophonia();
}
function zeroQphicosphisinphirphid(phi, cosphi, sinphi, rphid) {
var qa;
var qb;
var qc;
var qzero;
var ua;
var ub;
var uc;
qzero = quphicosphisinphirphid(0, phi, cosphi, sinphi, rphid);
if (qzero > 0) {
ua = 0;
ub = 1;
qa = qzero;
qb = quphicosphisinphirphid(ub, phi, cosphi, sinphi, rphid);
while (qb > 0) {
ua = ub;
qa = qb;
ub = ub * 2;
qb = quphicosphisinphirphid(ub, phi, cosphi, sinphi, rphid);
}
} else {
ua = -1;
ub = 0;
qa = quphicosphisinphirphid(ua, phi, cosphi, sinphi, rphid);
qb = qzero;
while (qa < 0) {
ub = ua;
qb = qa;
ua = ua * 2;
qa = quphicosphisinphirphid(ua, phi, cosphi, sinphi, rphid);
}
}
while ((ub - ua) > Epsilon) {
uc = (ub + ua) / 2.0;
qc = quphicosphisinphirphid(uc, phi, cosphi, sinphi, rphid);
if (qc > 0) {
ua = uc;
qa = qc;
} else {
ub = uc;
qb = qc;
}
}
return (ub + ua) / 2.0;
}
function registerPlugin() {
if (typeof Squeak === "object" && Squeak.registerExternalModule) {
Squeak.registerExternalModule("Klatt", {
setInterpreter: setInterpreter,
primitiveSynthesizeFrameIntoStartingAt: primitiveSynthesizeFrameIntoStartingAt,
getModuleName: getModuleName,
});
} else self.setTimeout(registerPlugin, 100);
}
registerPlugin();
})(); // Register module/plugin
|