from transformers import pipeline, set_seed from flask import Flask, request, jsonify import random, re app = Flask(__name__) model_cache = {} with open("ideas.txt", "r") as f: lines = f.readlines() def get_pipeline(model_name): if model_name not in model_cache: model_cache[model_name] = pipeline('text-generation', model=model_name, tokenizer='gpt2') return model_cache[model_name] def generate_prompts(starting_text, model_name, num_prompts=1, generation_args=None): response_list = [] gpt2_pipe = get_pipeline(model_name) for _ in range(num_prompts): for count in range(4): seed = random.randint(100, 1000000) set_seed(seed) if starting_text == "": starting_text = lines[random.randrange(0, len(lines))].strip().lower().capitalize() starting_text = re.sub(r"[,:\-–.!;?_]", '', starting_text) response = gpt2_pipe( starting_text, **generation_args # 各種パラメーターを一括で渡す ) generated_text = response[0]['generated_text'].strip() if generated_text != starting_text and len(generated_text) > (len(starting_text) + 4): cleaned_text = re.sub(r'[^ ]+\.[^ ]+', '', generated_text) cleaned_text = cleaned_text.replace("<", "").replace(">", "") response_list.append(cleaned_text) break return response_list[:num_prompts] @app.route('/', methods=['GET']) def generate_api(): starting_text = request.args.get('text', default="", type=str) num_prompts = request.args.get('n', default=1, type=int) model_param = request.args.get('model', default="sd", type=str).lower() # モデル選択 model_name = "Gustavosta/MagicPrompt-Dalle" if model_param == "dall" else "Gustavosta/MagicPrompt-Stable-Diffusion" # URL パラメータから生成設定を取得 generation_args = { "max_length": request.args.get('max_length', default=random.randint(60, 90), type=int), "min_length": request.args.get('min_length', default=0, type=int), "temperature": request.args.get('temperature', default=1.0, type=float), "top_k": request.args.get('top_k', default=50, type=int), "top_p": request.args.get('top_p', default=0.95, type=float), "repetition_penalty": request.args.get('repetition_penalty', default=1.0, type=float), "do_sample": request.args.get('do_sample', default=True, type=lambda v: v.lower() in ['true', '1', 'yes']), "num_return_sequences": 1 } results = generate_prompts(starting_text, model_name, num_prompts=num_prompts, generation_args=generation_args) return jsonify(results) if __name__ == '__main__': app.run(host='0.0.0.0', port=7860)