import os # Directories DATA_DIR = "data" IMAGE_DIR = os.path.join(DATA_DIR, "core_images") MODEL_DIR = "models" OUTPUT_DIR = "output" # Create directories if they don't exist os.makedirs(IMAGE_DIR, exist_ok=True) os.makedirs(MODEL_DIR, exist_ok=True) os.makedirs(OUTPUT_DIR, exist_ok=True) # Model parameters - adaptive to data size NUM_CLUSTERS = 3 # Reduced default IMAGE_SIZE = (224, 224) BATCH_SIZE = 32 # Candidate labels for classification CANDIDATE_LABELS = [ "gold-bearing rock", "iron-rich rock", "lithium-rich rock", "copper-bearing rock", "waste rock", "quartz-rich rock", "sulfide-rich rock" ] # Public geology repositories DATASET_SOURCES = [ { "name": "Geoscience Australia", "url": "https://geology.csiro.au/datasets/drill-core-images", "description": "Australian geological survey drill core images" }, { "name": "USGS Mineral Resources", "url": "https://mrdata.usgs.gov/geology/state/map-viewer.php", "description": "US Geological Survey mineral resources data" }, { "name": "BGS OpenGeoscience", "url": "https://www.bgs.ac.uk/discovering-geology/rock-library/", "description": "British Geological Survey rock sample images" } ]