Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from peft import PeftModel | |
| # !python -c "import torch; assert torch.cuda.get_device_capability()[0] >= 8, 'Hardware not supported for Flash Attention'" | |
| import json | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GemmaTokenizer, StoppingCriteria, StoppingCriteriaList, GenerationConfig | |
| # from google.colab import userdata | |
| import os | |
| #sft_model = "somosnlp/gemma-FULL-RAC-Colombia_v2" | |
| sft_model = "somosnlp/RecetasDeLaAbuela_mistral-7b-instruct-v0.2-bnb-4bit" | |
| base_model_name = "mistralai/Mistral-7B-Instruct-v0.2" | |
| bnb_config = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_quant_type="nf4", | |
| bnb_4bit_compute_dtype=torch.bfloat16 | |
| ) | |
| max_seq_length=400 | |
| # if torch.cuda.get_device_capability()[0] >= 8: | |
| # # print("Flash Attention") | |
| # attn_implementation="flash_attention_2" | |
| # else: | |
| # attn_implementation=None | |
| attn_implementation=None | |
| #base_model = AutoModelForCausalLM.from_pretrained(model_name,return_dict=True,torch_dtype=torch.float16,) | |
| #base_model = AutoModelForCausalLM.from_pretrained(base_model_name,return_dict=True,device_map="auto", torch_dtype=torch.float16,) | |
| base_model = AutoModelForCausalLM.from_pretrained(base_model_name, return_dict=True, device_map = {"":0}, attn_implementation = attn_implementation,).eval() | |
| tokenizer = AutoTokenizer.from_pretrained(base_model_name, max_length = max_seq_length) | |
| ft_model = PeftModel.from_pretrained(base_model, sft_model) | |
| model = ft_model.merge_and_unload() | |
| model.save_pretrained(".") | |
| model.to('cuda') | |
| tokenizer.save_pretrained(".") | |
| class ListOfTokensStoppingCriteria(StoppingCriteria): | |
| """ | |
| Clase para definir un criterio de parada basado en una lista de tokens específicos. | |
| """ | |
| def __init__(self, tokenizer, stop_tokens): | |
| self.tokenizer = tokenizer | |
| # Codifica cada token de parada y guarda sus IDs en una lista | |
| self.stop_token_ids_list = [tokenizer.encode(stop_token, add_special_tokens=False) for stop_token in stop_tokens] | |
| def __call__(self, input_ids, scores, **kwargs): | |
| # Verifica si los últimos tokens generados coinciden con alguno de los conjuntos de tokens de parada | |
| for stop_token_ids in self.stop_token_ids_list: | |
| len_stop_tokens = len(stop_token_ids) | |
| if len(input_ids[0]) >= len_stop_tokens: | |
| if input_ids[0, -len_stop_tokens:].tolist() == stop_token_ids: | |
| return True | |
| return False | |
| # Uso del criterio de parada personalizado | |
| stop_tokens = ["<end_of_turn>"] # Lista de tokens de parada | |
| # Inicializa tu criterio de parada con el tokenizer y la lista de tokens de parada | |
| stopping_criteria = ListOfTokensStoppingCriteria(tokenizer, stop_tokens) | |
| # Añade tu criterio de parada a una StoppingCriteriaList | |
| stopping_criteria_list = StoppingCriteriaList([stopping_criteria]) | |
| def generate_text(prompt, max_length=2100): | |
| # prompt="""What were the main contributions of Eratosthenes to the development of mathematics in ancient Greece?""" | |
| prompt=prompt.replace("\n", "").replace("¿","").replace("?","") | |
| #EXAMPLE | |
| input_text = f'''<bos><start_of_turn>system | |
| You are a helpful AI assistant. | |
| Responde en formato json. | |
| Eres un experto cocinero de la cocina hispanoamericana.<end_of_turn> | |
| <start_of_turn>user | |
| ¿{prompt}?<end_of_turn> | |
| <start_of_turn>model | |
| ''' | |
| inputs = tokenizer.encode(input_text, | |
| return_tensors="pt", | |
| add_special_tokens=False).to("cuda:0") | |
| max_new_tokens=max_length | |
| generation_config = GenerationConfig( | |
| max_new_tokens=max_new_tokens, | |
| temperature=0.32, | |
| #top_p=0.9, | |
| top_k=50, # 45 | |
| repetition_penalty=1.04, #1.1 | |
| do_sample=True, | |
| ) | |
| outputs = model.generate(generation_config=generation_config, | |
| input_ids=inputs, | |
| stopping_criteria=stopping_criteria_list,) | |
| return tokenizer.decode(outputs[0], skip_special_tokens=False) #True | |
| def mostrar_respuesta(pregunta): | |
| try: | |
| res= generate_text(pregunta, max_length=500) | |
| inicio_json = res.find('{') | |
| fin_json = res.rfind('}') + 1 | |
| json_str = res[inicio_json:fin_json] | |
| json_obj = json.loads(json_str) | |
| # print(json_obj) | |
| return json_obj["Respuesta"] | |
| except: | |
| json_obj={} | |
| json_obj['Respuesta']='Error' | |
| return json_obj | |
| # Ejemplos de preguntas | |
| ejemplos = [ | |
| ["¿Dime la receta de la tortilla de patatatas?"], | |
| ["¿Dime la receta del ceviche?"], | |
| ["¿Como se cocinan unos autenticos frijoles?"], | |
| ] | |
| iface = gr.Interface( | |
| fn=mostrar_respuesta, | |
| inputs=gr.Textbox(label="Pregunta"), | |
| outputs=[ | |
| gr.Textbox(label="Respuesta", lines=2), | |
| ], | |
| title="Recetas de la Abuel@", | |
| description="Introduce tu pregunta sobre recetas de cocina.", | |
| examples=ejemplos, | |
| ) | |
| iface.queue(max_size=14).launch() # share=True,debug=True | |