Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
# !python -c "import torch; assert torch.cuda.get_device_capability()[0] >= 8, 'Hardware not supported for Flash Attention'"
|
8 |
+
import json
|
9 |
+
import torch
|
10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GemmaTokenizer, StoppingCriteria, StoppingCriteriaList, GenerationConfig
|
11 |
+
# from google.colab import userdata
|
12 |
+
import os
|
13 |
+
|
14 |
+
model_id = "somosnlp/Sam_Diagnostic"
|
15 |
+
bnb_config = BitsAndBytesConfig(
|
16 |
+
load_in_4bit=True,
|
17 |
+
bnb_4bit_quant_type="nf4",
|
18 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
19 |
+
)
|
20 |
+
max_seq_length=2048
|
21 |
+
|
22 |
+
# if torch.cuda.get_device_capability()[0] >= 8:
|
23 |
+
# # print("Flash Attention")
|
24 |
+
# attn_implementation="flash_attention_2"
|
25 |
+
# else:
|
26 |
+
# attn_implementation=None
|
27 |
+
attn_implementation=None
|
28 |
+
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id,
|
30 |
+
max_length = max_seq_length)
|
31 |
+
model = AutoModelForCausalLM.from_pretrained(model_id,
|
32 |
+
# quantization_config=bnb_config,
|
33 |
+
device_map = {"":0},
|
34 |
+
attn_implementation = attn_implementation, # A100 o H100
|
35 |
+
).eval()
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
class ListOfTokensStoppingCriteria(StoppingCriteria):
|
40 |
+
"""
|
41 |
+
Clase para definir un criterio de parada basado en una lista de tokens específicos.
|
42 |
+
"""
|
43 |
+
def __init__(self, tokenizer, stop_tokens):
|
44 |
+
self.tokenizer = tokenizer
|
45 |
+
# Codifica cada token de parada y guarda sus IDs en una lista
|
46 |
+
self.stop_token_ids_list = [tokenizer.encode(stop_token, add_special_tokens=False) for stop_token in stop_tokens]
|
47 |
+
|
48 |
+
def __call__(self, input_ids, scores, **kwargs):
|
49 |
+
# Verifica si los últimos tokens generados coinciden con alguno de los conjuntos de tokens de parada
|
50 |
+
for stop_token_ids in self.stop_token_ids_list:
|
51 |
+
len_stop_tokens = len(stop_token_ids)
|
52 |
+
if len(input_ids[0]) >= len_stop_tokens:
|
53 |
+
if input_ids[0, -len_stop_tokens:].tolist() == stop_token_ids:
|
54 |
+
return True
|
55 |
+
return False
|
56 |
+
|
57 |
+
# Uso del criterio de parada personalizado
|
58 |
+
stop_tokens = ["<end_of_turn>"] # Lista de tokens de parada
|
59 |
+
|
60 |
+
# Inicializa tu criterio de parada con el tokenizer y la lista de tokens de parada
|
61 |
+
stopping_criteria = ListOfTokensStoppingCriteria(tokenizer, stop_tokens)
|
62 |
+
|
63 |
+
# Añade tu criterio de parada a una StoppingCriteriaList
|
64 |
+
stopping_criteria_list = StoppingCriteriaList([stopping_criteria])
|
65 |
+
|
66 |
+
def generate_text(prompt, idioma_entrada, idioma_salida, max_length=2100):
|
67 |
+
prompt=prompt.replace(". ", ".\n").strip()
|
68 |
+
|
69 |
+
input_text = f'''<bos><start_of_turn>system
|
70 |
+
You are a helpful AI assistant.
|
71 |
+
Responde en formato json.
|
72 |
+
Eres un agente experto en medicina.
|
73 |
+
Lista de codigos linguisticos disponibles: ["{idioma_entrada}", "{idioma_salida}"]<end_of_turn>
|
74 |
+
<start_of_turn>user
|
75 |
+
{prompt}<end_of_turn>
|
76 |
+
<start_of_turn>model
|
77 |
+
'''
|
78 |
+
|
79 |
+
inputs = tokenizer.encode(input_text,
|
80 |
+
return_tensors="pt",
|
81 |
+
add_special_tokens=False).to("cuda:0")
|
82 |
+
max_new_tokens=max_length
|
83 |
+
generation_config = GenerationConfig(
|
84 |
+
max_new_tokens=max_new_tokens,
|
85 |
+
temperature=0.35, #55
|
86 |
+
#top_p=0.9,
|
87 |
+
top_k=50, # 45
|
88 |
+
repetition_penalty=1., #1.1
|
89 |
+
do_sample=True,
|
90 |
+
)
|
91 |
+
outputs = base_model.generate(generation_config=generation_config,
|
92 |
+
input_ids=inputs,
|
93 |
+
stopping_criteria=stopping_criteria_list,)
|
94 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=False) #True
|
95 |
+
|
96 |
+
def mostrar_respuesta(pregunta, idioma_entrada, idioma_salida):
|
97 |
+
try:
|
98 |
+
lista_codigo_lin = {
|
99 |
+
"español": "es",
|
100 |
+
"ingles": "en",
|
101 |
+
}
|
102 |
+
# Utiliza los parámetros de idioma para obtener los códigos de idioma correspondientes.
|
103 |
+
codigo_lin_entrada = lista_codigo_lin[idioma_entrada.lower()]
|
104 |
+
codigo_lin_salida = lista_codigo_lin[idioma_salida.lower()]
|
105 |
+
|
106 |
+
res= generate_text(pregunta, codigo_lin_entrada, codigo_lin_salida, max_length=1500)
|
107 |
+
inicio_json = res.find('{')
|
108 |
+
fin_json = res.rfind('}') + 1
|
109 |
+
json_str = res[inicio_json:fin_json]
|
110 |
+
json_obj = json.loads(json_str)
|
111 |
+
return json_obj["description"], json_obj["medical_specialty"], json_obj["principal_diagnostic"]
|
112 |
+
except:
|
113 |
+
json_obj={}
|
114 |
+
json_obj['description']='Error diagnostico'
|
115 |
+
json_obj['medical_specialty']='Error diagnostico'
|
116 |
+
json_obj['principal_diagnostic']='Error diagnostico'
|
117 |
+
return json_obj
|
118 |
+
|
119 |
+
# Ejemplos de preguntas
|
120 |
+
ejemplos = [
|
121 |
+
["CHIEF COMPLAINT:, Left wrist pain.,HISTORY OF PRESENT PROBLEM"],
|
122 |
+
["INDICATIONS: ,Chest pain.,STRESS TECHNIQUE:,"],
|
123 |
+
["MOTIVO DE CONSULTA: Una niña de 2 meses"],
|
124 |
+
]
|
125 |
+
|
126 |
+
idiomas = ["español", "ingles"]
|
127 |
+
|
128 |
+
|
129 |
+
iface = gr.Interface(
|
130 |
+
fn=mostrar_respuesta,
|
131 |
+
inputs=[
|
132 |
+
gr.Textbox(label="Pregunta", placeholder="Introduce tu consulta médica aquí..."),
|
133 |
+
gr.Dropdown(label="Idioma de Entrada", choices=idiomas),
|
134 |
+
gr.Dropdown(label="Idioma de Salida", choices=idiomas),
|
135 |
+
],
|
136 |
+
outputs=[
|
137 |
+
gr.Textbox(label="Description", lines=2),
|
138 |
+
gr.Textbox(label="Medical specialty", lines=1),
|
139 |
+
gr.Textbox(label="Principal diagnostic", lines=1)
|
140 |
+
],
|
141 |
+
title="Consultas medicas",
|
142 |
+
description="Introduce tu diagnostico.",
|
143 |
+
examples=ejemplos,
|
144 |
+
concurrency_limit=20
|
145 |
+
)
|
146 |
+
|
147 |
+
iface.queue(max_size=14).launch(share=True,debug=True, ) # share=True,debug=True
|