Spaces:
Runtime error
Runtime error
pushing the application
Browse files- .gitignore +160 -0
- README.md +5 -5
- app.py +594 -0
- requirements.txt +72 -0
.gitignore
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Byte-compiled / optimized / DLL files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
|
| 6 |
+
# C extensions
|
| 7 |
+
*.so
|
| 8 |
+
|
| 9 |
+
# Distribution / packaging
|
| 10 |
+
.Python
|
| 11 |
+
build/
|
| 12 |
+
develop-eggs/
|
| 13 |
+
dist/
|
| 14 |
+
downloads/
|
| 15 |
+
eggs/
|
| 16 |
+
.eggs/
|
| 17 |
+
lib/
|
| 18 |
+
lib64/
|
| 19 |
+
parts/
|
| 20 |
+
sdist/
|
| 21 |
+
var/
|
| 22 |
+
wheels/
|
| 23 |
+
share/python-wheels/
|
| 24 |
+
*.egg-info/
|
| 25 |
+
.installed.cfg
|
| 26 |
+
*.egg
|
| 27 |
+
MANIFEST
|
| 28 |
+
|
| 29 |
+
# PyInstaller
|
| 30 |
+
# Usually these files are written by a python script from a template
|
| 31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 32 |
+
*.manifest
|
| 33 |
+
*.spec
|
| 34 |
+
|
| 35 |
+
# Installer logs
|
| 36 |
+
pip-log.txt
|
| 37 |
+
pip-delete-this-directory.txt
|
| 38 |
+
|
| 39 |
+
# Unit test / coverage reports
|
| 40 |
+
htmlcov/
|
| 41 |
+
.tox/
|
| 42 |
+
.nox/
|
| 43 |
+
.coverage
|
| 44 |
+
.coverage.*
|
| 45 |
+
.cache
|
| 46 |
+
nosetests.xml
|
| 47 |
+
coverage.xml
|
| 48 |
+
*.cover
|
| 49 |
+
*.py,cover
|
| 50 |
+
.hypothesis/
|
| 51 |
+
.pytest_cache/
|
| 52 |
+
cover/
|
| 53 |
+
|
| 54 |
+
# Translations
|
| 55 |
+
*.mo
|
| 56 |
+
*.pot
|
| 57 |
+
|
| 58 |
+
# Django stuff:
|
| 59 |
+
*.log
|
| 60 |
+
local_settings.py
|
| 61 |
+
db.sqlite3
|
| 62 |
+
db.sqlite3-journal
|
| 63 |
+
|
| 64 |
+
# Flask stuff:
|
| 65 |
+
instance/
|
| 66 |
+
.webassets-cache
|
| 67 |
+
|
| 68 |
+
# Scrapy stuff:
|
| 69 |
+
.scrapy
|
| 70 |
+
|
| 71 |
+
# Sphinx documentation
|
| 72 |
+
docs/_build/
|
| 73 |
+
|
| 74 |
+
# PyBuilder
|
| 75 |
+
.pybuilder/
|
| 76 |
+
target/
|
| 77 |
+
|
| 78 |
+
# Jupyter Notebook
|
| 79 |
+
.ipynb_checkpoints
|
| 80 |
+
|
| 81 |
+
# IPython
|
| 82 |
+
profile_default/
|
| 83 |
+
ipython_config.py
|
| 84 |
+
|
| 85 |
+
# pyenv
|
| 86 |
+
# For a library or package, you might want to ignore these files since the code is
|
| 87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
| 88 |
+
# .python-version
|
| 89 |
+
|
| 90 |
+
# pipenv
|
| 91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 94 |
+
# install all needed dependencies.
|
| 95 |
+
#Pipfile.lock
|
| 96 |
+
|
| 97 |
+
# poetry
|
| 98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
| 99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 100 |
+
# commonly ignored for libraries.
|
| 101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
| 102 |
+
#poetry.lock
|
| 103 |
+
|
| 104 |
+
# pdm
|
| 105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
| 106 |
+
#pdm.lock
|
| 107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
| 108 |
+
# in version control.
|
| 109 |
+
# https://pdm.fming.dev/#use-with-ide
|
| 110 |
+
.pdm.toml
|
| 111 |
+
|
| 112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
| 113 |
+
__pypackages__/
|
| 114 |
+
|
| 115 |
+
# Celery stuff
|
| 116 |
+
celerybeat-schedule
|
| 117 |
+
celerybeat.pid
|
| 118 |
+
|
| 119 |
+
# SageMath parsed files
|
| 120 |
+
*.sage.py
|
| 121 |
+
|
| 122 |
+
# Environments
|
| 123 |
+
.env
|
| 124 |
+
.venv
|
| 125 |
+
env/
|
| 126 |
+
venv/
|
| 127 |
+
ENV/
|
| 128 |
+
env.bak/
|
| 129 |
+
venv.bak/
|
| 130 |
+
|
| 131 |
+
# Spyder project settings
|
| 132 |
+
.spyderproject
|
| 133 |
+
.spyproject
|
| 134 |
+
|
| 135 |
+
# Rope project settings
|
| 136 |
+
.ropeproject
|
| 137 |
+
|
| 138 |
+
# mkdocs documentation
|
| 139 |
+
/site
|
| 140 |
+
|
| 141 |
+
# mypy
|
| 142 |
+
.mypy_cache/
|
| 143 |
+
.dmypy.json
|
| 144 |
+
dmypy.json
|
| 145 |
+
|
| 146 |
+
# Pyre type checker
|
| 147 |
+
.pyre/
|
| 148 |
+
|
| 149 |
+
# pytype static type analyzer
|
| 150 |
+
.pytype/
|
| 151 |
+
|
| 152 |
+
# Cython debug symbols
|
| 153 |
+
cython_debug/
|
| 154 |
+
|
| 155 |
+
# PyCharm
|
| 156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
| 157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 160 |
+
#.idea/
|
README.md
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 4.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
|
|
|
| 1 |
---
|
| 2 |
+
title: SomosNLPDashboard
|
| 3 |
+
emoji: π
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: yellow
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.19.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
app.py
ADDED
|
@@ -0,0 +1,594 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Dashboard to visualize the progress of the SomosNLP project.
|
| 3 |
+
by Argilla.
|
| 4 |
+
|
| 5 |
+
This dashboard shows the progress of the SomosNLP project, including the number of annotated and pending records, the top annotators, and the remaining records to be annotated.
|
| 6 |
+
The data is fetched from the source datasets and updated every 5 minutes.
|
| 7 |
+
Due to Gradio's limitation on what can be passed as input to their graph methods, the data is fetched outside of the graph methods and stored in global variables. Therefore,
|
| 8 |
+
a function for each graph-dataset tuple is needed. Moreover, to also avoid circular imports, all the functions must be
|
| 9 |
+
in the same Python file. This behavior is not ideal, and could be improved knowing how to pass input parameter to graph functions in Gradio.
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
import datetime
|
| 13 |
+
import os
|
| 14 |
+
from typing import Dict, List, Tuple
|
| 15 |
+
from uuid import UUID
|
| 16 |
+
|
| 17 |
+
import altair as alt
|
| 18 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
| 19 |
+
import argilla as rg
|
| 20 |
+
from argilla.feedback import FeedbackDataset
|
| 21 |
+
from argilla.client.feedback.dataset.remote.dataset import RemoteFeedbackDataset
|
| 22 |
+
import gradio as gr
|
| 23 |
+
import pandas as pd
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def get_source_datasets() -> Tuple[
|
| 27 |
+
FeedbackDataset | RemoteFeedbackDataset,
|
| 28 |
+
FeedbackDataset | RemoteFeedbackDataset,
|
| 29 |
+
FeedbackDataset | RemoteFeedbackDataset,
|
| 30 |
+
]:
|
| 31 |
+
"""
|
| 32 |
+
This function returns the source datasets to be showed in the visualization. The datasets names
|
| 33 |
+
and the workspace name is obtained from the environment variables.
|
| 34 |
+
|
| 35 |
+
Returns:
|
| 36 |
+
A tuple with the three source datasets
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
return (
|
| 40 |
+
rg.FeedbackDataset.from_argilla(
|
| 41 |
+
os.getenv("SOURCE_DATASET_1"), workspace=os.getenv("SOURCE_WORKSPACE")
|
| 42 |
+
),
|
| 43 |
+
rg.FeedbackDataset.from_argilla(
|
| 44 |
+
os.getenv("SOURCE_DATASET_2"), workspace=os.getenv("SOURCE_WORKSPACE")
|
| 45 |
+
),
|
| 46 |
+
rg.FeedbackDataset.from_argilla(
|
| 47 |
+
os.getenv("SOURCE_DATASET_3"), workspace=os.getenv("SOURCE_WORKSPACE")
|
| 48 |
+
),
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def get_user_annotations_dictionary(
|
| 53 |
+
datasets: List[FeedbackDataset | RemoteFeedbackDataset],
|
| 54 |
+
) -> Dict[str, int]:
|
| 55 |
+
"""
|
| 56 |
+
This function returns a dictionary with the username as the key and the number of annotations as the value.
|
| 57 |
+
All annotationsfrom all datasets are introduced in the same dictionary.
|
| 58 |
+
|
| 59 |
+
Args:
|
| 60 |
+
datasets: A list with the datasets to be used to obtain the annotations and the annotators.
|
| 61 |
+
Returns:
|
| 62 |
+
A dictionary with the username as the key and the number of annotations as the value.
|
| 63 |
+
"""
|
| 64 |
+
output = {}
|
| 65 |
+
for dataset in datasets:
|
| 66 |
+
for record in dataset:
|
| 67 |
+
for response in record.responses:
|
| 68 |
+
if str(response.user_id) not in output.keys():
|
| 69 |
+
output[str(response.user_id)] = 1
|
| 70 |
+
else:
|
| 71 |
+
output[str(response.user_id)] += 1
|
| 72 |
+
|
| 73 |
+
# Changing the name of the keys, from the id to the username
|
| 74 |
+
for key in list(output.keys()):
|
| 75 |
+
output[rg.User.from_id(UUID(key)).username] = output.pop(key)
|
| 76 |
+
|
| 77 |
+
return output
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def donut_chart_1() -> alt.Chart:
|
| 81 |
+
"""
|
| 82 |
+
This function returns a donut chart with the number of annotated and pending records, for the first dataset
|
| 83 |
+
|
| 84 |
+
Returns:
|
| 85 |
+
An altair chart with the donut chart.
|
| 86 |
+
"""
|
| 87 |
+
|
| 88 |
+
annotated_records = len(dataset1.filter_by(response_status=["submitted"]))
|
| 89 |
+
pending_records = len(dataset1) - annotated_records
|
| 90 |
+
|
| 91 |
+
source = pd.DataFrame(
|
| 92 |
+
{
|
| 93 |
+
"values": [annotated_records, pending_records],
|
| 94 |
+
"category": ["Annotated", "Pending"], # Add a new column for categories
|
| 95 |
+
}
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
base = alt.Chart(source).encode(
|
| 99 |
+
theta=alt.Theta("values:Q", stack=True),
|
| 100 |
+
radius=alt.Radius(
|
| 101 |
+
"values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20)
|
| 102 |
+
),
|
| 103 |
+
color=alt.Color("category:N", legend=alt.Legend(title="Category")),
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
c1 = base.mark_arc(innerRadius=20, stroke="#fff")
|
| 107 |
+
|
| 108 |
+
c2 = base.mark_text(radiusOffset=10).encode(text="values:Q")
|
| 109 |
+
|
| 110 |
+
chart = c1 + c2
|
| 111 |
+
|
| 112 |
+
return chart
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def donut_chart_2() -> alt.Chart:
|
| 116 |
+
"""
|
| 117 |
+
This function returns a donut chart with the number of annotated and pending records, for the second dataset.
|
| 118 |
+
|
| 119 |
+
Returns:
|
| 120 |
+
An altair chart with the donut chart.
|
| 121 |
+
"""
|
| 122 |
+
|
| 123 |
+
annotated_records = len(dataset2.filter_by(response_status=["submitted"]))
|
| 124 |
+
pending_records = len(dataset2) - annotated_records
|
| 125 |
+
|
| 126 |
+
source = pd.DataFrame(
|
| 127 |
+
{
|
| 128 |
+
"values": [annotated_records, pending_records],
|
| 129 |
+
"category": ["Annotated", "Pending"], # Add a new column for categories
|
| 130 |
+
}
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
base = alt.Chart(source).encode(
|
| 134 |
+
theta=alt.Theta("values:Q", stack=True),
|
| 135 |
+
radius=alt.Radius(
|
| 136 |
+
"values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20)
|
| 137 |
+
),
|
| 138 |
+
color=alt.Color("category:N", legend=alt.Legend(title="Category")),
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
c1 = base.mark_arc(innerRadius=20, stroke="#fff")
|
| 142 |
+
|
| 143 |
+
c2 = base.mark_text(radiusOffset=10).encode(text="values:Q")
|
| 144 |
+
|
| 145 |
+
chart = c1 + c2
|
| 146 |
+
|
| 147 |
+
return chart
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def donut_chart_3() -> alt.Chart:
|
| 151 |
+
"""
|
| 152 |
+
This function returns a donut chart with the number of annotated and pending records, for the third dataset.
|
| 153 |
+
|
| 154 |
+
Returns:
|
| 155 |
+
An altair chart with the donut chart.
|
| 156 |
+
"""
|
| 157 |
+
|
| 158 |
+
annotated_records = len(dataset3.filter_by(response_status=["submitted"]))
|
| 159 |
+
pending_records = len(dataset3) - annotated_records
|
| 160 |
+
|
| 161 |
+
source = pd.DataFrame(
|
| 162 |
+
{
|
| 163 |
+
"values": [annotated_records, pending_records],
|
| 164 |
+
"category": ["Annotated", "Pending"], # Add a new column for categories
|
| 165 |
+
}
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
base = alt.Chart(source).encode(
|
| 169 |
+
theta=alt.Theta("values:Q", stack=True),
|
| 170 |
+
radius=alt.Radius(
|
| 171 |
+
"values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20)
|
| 172 |
+
),
|
| 173 |
+
color=alt.Color("category:N", legend=alt.Legend(title="Category")),
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
c1 = base.mark_arc(innerRadius=20, stroke="#fff")
|
| 177 |
+
|
| 178 |
+
c2 = base.mark_text(radiusOffset=10).encode(text="values:Q")
|
| 179 |
+
|
| 180 |
+
chart = c1 + c2
|
| 181 |
+
|
| 182 |
+
return chart
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def kpi_chart_submitted_1() -> alt.Chart:
|
| 186 |
+
"""
|
| 187 |
+
This function returns a KPI chart with the total amount of records that have been annotated, for the first dataset.
|
| 188 |
+
|
| 189 |
+
Returns:
|
| 190 |
+
An altair chart with the KPI chart.
|
| 191 |
+
"""
|
| 192 |
+
|
| 193 |
+
total = len(dataset1.filter_by(response_status=["submitted"]))
|
| 194 |
+
|
| 195 |
+
# Assuming you have a DataFrame with user data, create a sample DataFrame
|
| 196 |
+
data = pd.DataFrame({"Category": ["Total completed"], "Value": [total]})
|
| 197 |
+
|
| 198 |
+
# Create Altair chart
|
| 199 |
+
chart = (
|
| 200 |
+
alt.Chart(data)
|
| 201 |
+
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
|
| 202 |
+
.encode(text="Value:N")
|
| 203 |
+
.properties(title="Total completed", width=250, height=200)
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
return chart
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
def kpi_chart_submitted_2() -> alt.Chart:
|
| 210 |
+
"""
|
| 211 |
+
This function returns a KPI chart with the total amount of records that have been annotated, for the second dataset.
|
| 212 |
+
|
| 213 |
+
Returns:
|
| 214 |
+
An altair chart with the KPI chart.
|
| 215 |
+
"""
|
| 216 |
+
|
| 217 |
+
total = len(dataset2.filter_by(response_status=["submitted"]))
|
| 218 |
+
|
| 219 |
+
# Assuming you have a DataFrame with user data, create a sample DataFrame
|
| 220 |
+
data = pd.DataFrame({"Category": ["Total completed"], "Value": [total]})
|
| 221 |
+
|
| 222 |
+
# Create Altair chart
|
| 223 |
+
chart = (
|
| 224 |
+
alt.Chart(data)
|
| 225 |
+
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
|
| 226 |
+
.encode(text="Value:N")
|
| 227 |
+
.properties(title="Total completed", width=250, height=200)
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
return chart
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
def kpi_chart_submitted_3() -> alt.Chart:
|
| 234 |
+
"""
|
| 235 |
+
This function returns a KPI chart with the total amount of records that have been annotated, for the third dataset.
|
| 236 |
+
|
| 237 |
+
Returns:
|
| 238 |
+
An altair chart with the KPI chart.
|
| 239 |
+
"""
|
| 240 |
+
|
| 241 |
+
total = len(dataset3.filter_by(response_status=["submitted"]))
|
| 242 |
+
|
| 243 |
+
# Assuming you have a DataFrame with user data, create a sample DataFrame
|
| 244 |
+
data = pd.DataFrame({"Category": ["Total completed"], "Value": [total]})
|
| 245 |
+
|
| 246 |
+
# Create Altair chart
|
| 247 |
+
chart = (
|
| 248 |
+
alt.Chart(data)
|
| 249 |
+
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
|
| 250 |
+
.encode(text="Value:N")
|
| 251 |
+
.properties(title="Total completed", width=250, height=200)
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
return chart
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def kpi_chart_remaining_1() -> alt.Chart:
|
| 258 |
+
"""
|
| 259 |
+
This function returns a KPI chart with the remaining amount of records to be annotated, for the first dataset.
|
| 260 |
+
|
| 261 |
+
Returns:
|
| 262 |
+
An altair chart with the KPI chart.
|
| 263 |
+
"""
|
| 264 |
+
|
| 265 |
+
annotated_records = len(dataset1.filter_by(response_status=["submitted"]))
|
| 266 |
+
pending_records = len(dataset1) - annotated_records
|
| 267 |
+
|
| 268 |
+
# Assuming you have a DataFrame with user data, create a sample DataFrame
|
| 269 |
+
data = pd.DataFrame({"Category": ["Total remaining"], "Value": [pending_records]})
|
| 270 |
+
|
| 271 |
+
# Create Altair chart
|
| 272 |
+
chart = (
|
| 273 |
+
alt.Chart(data)
|
| 274 |
+
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
|
| 275 |
+
.encode(text="Value:N")
|
| 276 |
+
.properties(title="Total remaining", width=250, height=200)
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
return chart
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
def kpi_chart_remaining_2() -> alt.Chart:
|
| 283 |
+
"""
|
| 284 |
+
This function returns a KPI chart with the remaining amount of records to be annotated, for the second dataset.
|
| 285 |
+
Returns:
|
| 286 |
+
An altair chart with the KPI chart.
|
| 287 |
+
"""
|
| 288 |
+
|
| 289 |
+
annotated_records = len(dataset2.filter_by(response_status=["submitted"]))
|
| 290 |
+
pending_records = len(dataset2) - annotated_records
|
| 291 |
+
|
| 292 |
+
# Assuming you have a DataFrame with user data, create a sample DataFrame
|
| 293 |
+
data = pd.DataFrame({"Category": ["Total remaining"], "Value": [pending_records]})
|
| 294 |
+
|
| 295 |
+
# Create Altair chart
|
| 296 |
+
chart = (
|
| 297 |
+
alt.Chart(data)
|
| 298 |
+
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
|
| 299 |
+
.encode(text="Value:N")
|
| 300 |
+
.properties(title="Total remaining", width=250, height=200)
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
return chart
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
def kpi_chart_remaining_3() -> alt.Chart:
|
| 307 |
+
"""
|
| 308 |
+
This function returns a KPI chart with the remaining amount of records to be annotated, for the third dataset.
|
| 309 |
+
|
| 310 |
+
Returns:
|
| 311 |
+
An altair chart with the KPI chart.
|
| 312 |
+
"""
|
| 313 |
+
|
| 314 |
+
annotated_records = len(dataset3.filter_by(response_status=["submitted"]))
|
| 315 |
+
pending_records = len(dataset3) - annotated_records
|
| 316 |
+
|
| 317 |
+
# Assuming you have a DataFrame with user data, create a sample DataFrame
|
| 318 |
+
data = pd.DataFrame({"Category": ["Total remaining"], "Value": [pending_records]})
|
| 319 |
+
|
| 320 |
+
# Create Altair chart
|
| 321 |
+
chart = (
|
| 322 |
+
alt.Chart(data)
|
| 323 |
+
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
|
| 324 |
+
.encode(text="Value:N")
|
| 325 |
+
.properties(title="Total remaining", width=250, height=200)
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
return chart
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
def render_hub_user_link(hub_id: str) -> str:
|
| 332 |
+
"""
|
| 333 |
+
This function formats the username with a link to the user's profile in the Hugging Face Hub.
|
| 334 |
+
|
| 335 |
+
Args:
|
| 336 |
+
hub_id: The user's id in the Hugging Face Hub.
|
| 337 |
+
Returns:
|
| 338 |
+
A string with the username formatted as a link to the user's profile in the Hugging Face Hub.
|
| 339 |
+
"""
|
| 340 |
+
link = f"https://huggingface.co/{hub_id}"
|
| 341 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{hub_id}</a>'
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
def kpi_chart_annotators() -> alt.Chart:
|
| 345 |
+
"""
|
| 346 |
+
This function returns a KPI chart with the total amount of annotators.
|
| 347 |
+
|
| 348 |
+
Returns:
|
| 349 |
+
An altair chart with the KPI chart.
|
| 350 |
+
"""
|
| 351 |
+
|
| 352 |
+
# Obtain the total amount of annotators
|
| 353 |
+
total_annotators = len(user_ids_annotations)
|
| 354 |
+
|
| 355 |
+
# Assuming you have a DataFrame with user data, create a sample DataFrame
|
| 356 |
+
data = pd.DataFrame(
|
| 357 |
+
{"Category": ["Total Contributors"], "Value": [total_annotators]}
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
# Create Altair chart
|
| 361 |
+
chart = (
|
| 362 |
+
alt.Chart(data)
|
| 363 |
+
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
|
| 364 |
+
.encode(text="Value:N")
|
| 365 |
+
.properties(title="Number of Contributors", width=250, height=200)
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
return chart
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
def obtain_top_users(user_ids_annotations: Dict[str, int]) -> pd.DataFrame:
|
| 372 |
+
"""
|
| 373 |
+
This function returns the top 50 users with the most annotations. The usernames are formatted as links to the user's profile in the Hugging Face Hub.
|
| 374 |
+
|
| 375 |
+
Args:
|
| 376 |
+
user_ids_annotations: A dictionary with the user ids as the key and the number of annotations as the value.
|
| 377 |
+
Returns:
|
| 378 |
+
A pandas dataframe with the top 5 users with the most annotations.
|
| 379 |
+
"""
|
| 380 |
+
|
| 381 |
+
dataframe = pd.DataFrame(
|
| 382 |
+
user_ids_annotations.items(), columns=["Name", "Submitted Responses"]
|
| 383 |
+
)
|
| 384 |
+
dataframe["Name"] = dataframe["Name"].apply(render_hub_user_link)
|
| 385 |
+
dataframe = dataframe.sort_values(by="Submitted Responses", ascending=False)
|
| 386 |
+
return dataframe.head(50)
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
def get_top() -> pd.DataFrame:
|
| 390 |
+
"""
|
| 391 |
+
This function returns the top users with the most annotations. The usernames are formatted as links to the user's profile in the Hugging Face Hub.
|
| 392 |
+
|
| 393 |
+
Returns:
|
| 394 |
+
A pandas dataframe with the top users with the most annotations.
|
| 395 |
+
"""
|
| 396 |
+
return obtain_top_users(user_ids_annotations)
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
def fetch_data() -> None:
|
| 400 |
+
"""
|
| 401 |
+
This function fetches the data from the source datasets and updates the global variables.
|
| 402 |
+
"""
|
| 403 |
+
|
| 404 |
+
print(f"Starting to fetch data: {datetime.datetime.now()}")
|
| 405 |
+
|
| 406 |
+
# Load the dataset as global variable to be able to use it in all Gradio graph methods,
|
| 407 |
+
# as they usually do not allow arguments.
|
| 408 |
+
global dataset1, dataset2, dataset3, user_ids_annotations
|
| 409 |
+
dataset1, dataset2, dataset3 = get_source_datasets()
|
| 410 |
+
user_ids_annotations = get_user_annotations_dictionary(
|
| 411 |
+
[dataset1, dataset2, dataset3]
|
| 412 |
+
)
|
| 413 |
+
|
| 414 |
+
# Print the current date and time
|
| 415 |
+
print(f"Data fetched: {datetime.datetime.now()}")
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
def main() -> None:
|
| 419 |
+
|
| 420 |
+
# Set the update interval
|
| 421 |
+
update_interval = 300 # seconds
|
| 422 |
+
update_interval_charts = 30 # seconds
|
| 423 |
+
|
| 424 |
+
# Connect to the space with rg.init()
|
| 425 |
+
rg.init(
|
| 426 |
+
api_url=os.getenv("ARGILLA_API_URL"),
|
| 427 |
+
api_key=os.getenv("ARGILLA_API_KEY"),
|
| 428 |
+
extra_headers={"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"},
|
| 429 |
+
)
|
| 430 |
+
|
| 431 |
+
# Initial data fetching
|
| 432 |
+
fetch_data()
|
| 433 |
+
|
| 434 |
+
scheduler = BackgroundScheduler()
|
| 435 |
+
scheduler.add_job(
|
| 436 |
+
func=fetch_data, trigger="interval", seconds=update_interval, max_instances=1
|
| 437 |
+
)
|
| 438 |
+
scheduler.start()
|
| 439 |
+
|
| 440 |
+
# To avoid the orange border for the Gradio elements that are in constant loading
|
| 441 |
+
css = """
|
| 442 |
+
.generating {
|
| 443 |
+
border: none;
|
| 444 |
+
}
|
| 445 |
+
"""
|
| 446 |
+
|
| 447 |
+
with gr.Blocks(css=css, title="LLM Benchmark en EspaΓ±ol Dashboard") as demo:
|
| 448 |
+
|
| 449 |
+
# JSS code to force light theme
|
| 450 |
+
demo.load(
|
| 451 |
+
None,
|
| 452 |
+
None,
|
| 453 |
+
js="""
|
| 454 |
+
() => {
|
| 455 |
+
const params = new URLSearchParams(window.location.search);
|
| 456 |
+
if (!params.has('__theme')) {
|
| 457 |
+
params.set('__theme', 'light');
|
| 458 |
+
window.location.search = params.toString();
|
| 459 |
+
}
|
| 460 |
+
}""",
|
| 461 |
+
)
|
| 462 |
+
|
| 463 |
+
gr.Markdown(
|
| 464 |
+
"""
|
| 465 |
+
# π£οΈ SomosNLP Progress Dashboard
|
| 466 |
+
"""
|
| 467 |
+
)
|
| 468 |
+
|
| 469 |
+
gr.Markdown(
|
| 470 |
+
f"""
|
| 471 |
+
## π Progress in dataset {os.getenv("SOURCE_DATASET_1")}
|
| 472 |
+
"""
|
| 473 |
+
)
|
| 474 |
+
with gr.Row():
|
| 475 |
+
|
| 476 |
+
plot = gr.Plot(label="Plot")
|
| 477 |
+
demo.load(
|
| 478 |
+
kpi_chart_submitted_1,
|
| 479 |
+
inputs=[],
|
| 480 |
+
outputs=[plot],
|
| 481 |
+
every=update_interval_charts,
|
| 482 |
+
)
|
| 483 |
+
|
| 484 |
+
plot = gr.Plot(label="Plot")
|
| 485 |
+
demo.load(
|
| 486 |
+
kpi_chart_remaining_1,
|
| 487 |
+
inputs=[],
|
| 488 |
+
outputs=[plot],
|
| 489 |
+
every=update_interval_charts,
|
| 490 |
+
)
|
| 491 |
+
|
| 492 |
+
# donut_chart_plotted_1 = gr.Plot(label="Plot")
|
| 493 |
+
# demo.load(
|
| 494 |
+
# donut_chart_1,
|
| 495 |
+
# inputs=[],
|
| 496 |
+
# outputs=[donut_chart_plotted_1],
|
| 497 |
+
# )
|
| 498 |
+
|
| 499 |
+
gr.Markdown(
|
| 500 |
+
f"""
|
| 501 |
+
## π Progress in dataset {os.getenv("SOURCE_DATASET_2")}
|
| 502 |
+
"""
|
| 503 |
+
)
|
| 504 |
+
with gr.Row():
|
| 505 |
+
|
| 506 |
+
plot = gr.Plot(label="Plot")
|
| 507 |
+
demo.load(
|
| 508 |
+
kpi_chart_submitted_2,
|
| 509 |
+
inputs=[],
|
| 510 |
+
outputs=[plot],
|
| 511 |
+
every=update_interval_charts,
|
| 512 |
+
)
|
| 513 |
+
|
| 514 |
+
plot = gr.Plot(label="Plot")
|
| 515 |
+
demo.load(
|
| 516 |
+
kpi_chart_remaining_2,
|
| 517 |
+
inputs=[],
|
| 518 |
+
outputs=[plot],
|
| 519 |
+
every=update_interval_charts,
|
| 520 |
+
)
|
| 521 |
+
|
| 522 |
+
# donut_chart_plotted_2 = gr.Plot(label="Plot")
|
| 523 |
+
# demo.load(
|
| 524 |
+
# donut_chart_2,
|
| 525 |
+
# inputs=[],
|
| 526 |
+
# outputs=[donut_chart_plotted_2],
|
| 527 |
+
# )
|
| 528 |
+
|
| 529 |
+
gr.Markdown(
|
| 530 |
+
f"""
|
| 531 |
+
## π Progress in dataset {os.getenv("SOURCE_DATASET_3")}
|
| 532 |
+
"""
|
| 533 |
+
)
|
| 534 |
+
with gr.Row():
|
| 535 |
+
|
| 536 |
+
plot = gr.Plot(label="Plot")
|
| 537 |
+
demo.load(
|
| 538 |
+
kpi_chart_submitted_3,
|
| 539 |
+
inputs=[],
|
| 540 |
+
outputs=[plot],
|
| 541 |
+
every=update_interval_charts,
|
| 542 |
+
)
|
| 543 |
+
|
| 544 |
+
plot = gr.Plot(label="Plot")
|
| 545 |
+
demo.load(
|
| 546 |
+
kpi_chart_remaining_3,
|
| 547 |
+
inputs=[],
|
| 548 |
+
outputs=[plot],
|
| 549 |
+
every=update_interval_charts,
|
| 550 |
+
)
|
| 551 |
+
|
| 552 |
+
# donut_chart_plotted_3 = gr.Plot(label="Plot")
|
| 553 |
+
# demo.load(
|
| 554 |
+
# donut_chart_3,
|
| 555 |
+
# inputs=[],
|
| 556 |
+
# outputs=[donut_chart_plotted_3],
|
| 557 |
+
# )
|
| 558 |
+
|
| 559 |
+
gr.Markdown(
|
| 560 |
+
"""
|
| 561 |
+
## πΎ Contributors Hall of Fame
|
| 562 |
+
The number of all contributors and the top contributors:
|
| 563 |
+
"""
|
| 564 |
+
)
|
| 565 |
+
|
| 566 |
+
with gr.Row():
|
| 567 |
+
|
| 568 |
+
plot2 = gr.Plot(label="Plot")
|
| 569 |
+
demo.load(
|
| 570 |
+
kpi_chart_annotators,
|
| 571 |
+
inputs=[],
|
| 572 |
+
outputs=[plot2],
|
| 573 |
+
every=update_interval_charts,
|
| 574 |
+
)
|
| 575 |
+
|
| 576 |
+
top_df_plot = gr.Dataframe(
|
| 577 |
+
headers=["Name", "Submitted Responses"],
|
| 578 |
+
datatype=[
|
| 579 |
+
"markdown",
|
| 580 |
+
"number",
|
| 581 |
+
],
|
| 582 |
+
row_count=50,
|
| 583 |
+
col_count=(2, "fixed"),
|
| 584 |
+
interactive=False,
|
| 585 |
+
)
|
| 586 |
+
|
| 587 |
+
demo.load(get_top, None, [top_df_plot], every=update_interval_charts)
|
| 588 |
+
|
| 589 |
+
# Launch the Gradio interface
|
| 590 |
+
demo.launch(share=True, debug=True)
|
| 591 |
+
|
| 592 |
+
|
| 593 |
+
if __name__ == "__main__":
|
| 594 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
aiofiles==23.2.1
|
| 2 |
+
altair==5.2.0
|
| 3 |
+
annotated-types==0.6.0
|
| 4 |
+
anyio==4.2.0
|
| 5 |
+
apscheduler==3.10.4
|
| 6 |
+
argilla==1.23.0
|
| 7 |
+
attrs==23.2.0
|
| 8 |
+
backoff==2.2.1
|
| 9 |
+
certifi==2024.2.2
|
| 10 |
+
charset-normalizer==3.3.2
|
| 11 |
+
click==8.1.7
|
| 12 |
+
colorama==0.4.6
|
| 13 |
+
contourpy==1.2.0
|
| 14 |
+
cycler==0.12.1
|
| 15 |
+
Deprecated==1.2.14
|
| 16 |
+
exceptiongroup==1.2.0
|
| 17 |
+
fastapi==0.109.2
|
| 18 |
+
ffmpy==0.3.1
|
| 19 |
+
filelock==3.13.1
|
| 20 |
+
fonttools==4.48.1
|
| 21 |
+
fsspec==2024.2.0
|
| 22 |
+
gradio==4.17.0
|
| 23 |
+
gradio_client==0.9.0
|
| 24 |
+
h11==0.14.0
|
| 25 |
+
httpcore==1.0.2
|
| 26 |
+
httpx==0.26.0
|
| 27 |
+
huggingface-hub==0.20.3
|
| 28 |
+
idna==3.6
|
| 29 |
+
importlib-resources==6.1.1
|
| 30 |
+
Jinja2==3.1.3
|
| 31 |
+
jsonschema==4.21.1
|
| 32 |
+
jsonschema-specifications==2023.12.1
|
| 33 |
+
kiwisolver==1.4.5
|
| 34 |
+
markdown-it-py==3.0.0
|
| 35 |
+
MarkupSafe==2.1.5
|
| 36 |
+
matplotlib==3.8.2
|
| 37 |
+
mdurl==0.1.2
|
| 38 |
+
monotonic==1.6
|
| 39 |
+
numpy==1.23.5
|
| 40 |
+
orjson==3.9.13
|
| 41 |
+
packaging==23.2
|
| 42 |
+
pandas==1.5.3
|
| 43 |
+
pillow==10.2.0
|
| 44 |
+
pydantic==2.6.1
|
| 45 |
+
pydantic_core==2.16.2
|
| 46 |
+
pydub==0.25.1
|
| 47 |
+
Pygments==2.17.2
|
| 48 |
+
pyparsing==3.1.1
|
| 49 |
+
python-dateutil==2.8.2
|
| 50 |
+
python-multipart==0.0.7
|
| 51 |
+
pytz==2024.1
|
| 52 |
+
PyYAML==6.0.1
|
| 53 |
+
referencing==0.33.0
|
| 54 |
+
requests==2.31.0
|
| 55 |
+
rich==13.7.0
|
| 56 |
+
rpds-py==0.17.1
|
| 57 |
+
ruff==0.2.1
|
| 58 |
+
semantic-version==2.10.0
|
| 59 |
+
shellingham==1.5.4
|
| 60 |
+
six==1.16.0
|
| 61 |
+
sniffio==1.3.0
|
| 62 |
+
starlette==0.36.3
|
| 63 |
+
tomlkit==0.12.0
|
| 64 |
+
toolz==0.12.1
|
| 65 |
+
tqdm==4.66.1
|
| 66 |
+
typer==0.9.0
|
| 67 |
+
typing_extensions==4.9.0
|
| 68 |
+
urllib3==2.2.0
|
| 69 |
+
uvicorn==0.27.0.post1
|
| 70 |
+
vega-datasets==0.9.0
|
| 71 |
+
websockets==11.0.3
|
| 72 |
+
wrapt==1.14.1
|