Spaces:
Runtime error
Runtime error
Commit
·
4da5970
1
Parent(s):
11d32ed
extract score calculation to new script
Browse files- app.py +3 -447
- calculate_scores.py +462 -0
app.py
CHANGED
@@ -10,453 +10,9 @@ import pandas as pd
|
|
10 |
from dotenv import load_dotenv
|
11 |
from fastapi import FastAPI
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
# Constants
|
16 |
-
DATA_DIR = "data"
|
17 |
-
PARTICIPANTS_CSV = os.path.join(DATA_DIR, "participants.csv")
|
18 |
-
EQUIPOS_CSV = os.path.join(DATA_DIR, "equipos.csv")
|
19 |
-
LEADERBOARD_PERSONAL_CSV = "leaderboard_personal.csv"
|
20 |
-
LEADERBOARD_EQUIPOS_CSV = "leaderboard_equipos.csv"
|
21 |
-
|
22 |
-
# Column mappings for participants info
|
23 |
-
COLUMN_MAP = {
|
24 |
-
"gmail": "Dirección de correo electrónico",
|
25 |
-
"discord": "¿Cuál es tu nombre en Discord?",
|
26 |
-
"hf_username": "¿Cuál es tu nombre en el Hub de Hugging Face?",
|
27 |
-
"contact_email": "Email de contacto",
|
28 |
-
}
|
29 |
-
|
30 |
-
# Column mappings for teams info
|
31 |
-
TEAM_COLUMNS = {
|
32 |
-
"team_name": "Nombre del equipo",
|
33 |
-
"email_1": "Email 1",
|
34 |
-
"email_2": "Email 2",
|
35 |
-
"email_3": "Email 3",
|
36 |
-
"email_4": "Email 4",
|
37 |
-
"email_5": "Email 5",
|
38 |
-
}
|
39 |
-
|
40 |
-
# Initialize Argilla client
|
41 |
-
try:
|
42 |
-
client = rg.Argilla(
|
43 |
-
api_url=os.getenv("ARGILLA_API_URL", ""),
|
44 |
-
api_key=os.getenv("ARGILLA_API_KEY", ""),
|
45 |
-
)
|
46 |
-
except Exception as e:
|
47 |
-
print(f"Error initializing Argilla client: {e}")
|
48 |
-
client = None
|
49 |
-
|
50 |
-
# Countries data
|
51 |
-
countries = {
|
52 |
-
"Argentina": {"iso": "ARG", "emoji": "🇦🇷"},
|
53 |
-
"Bolivia": {"iso": "BOL", "emoji": "🇧🇴"},
|
54 |
-
"Chile": {"iso": "CHL", "emoji": "🇨🇱"},
|
55 |
-
"Colombia": {"iso": "COL", "emoji": "🇨🇴"},
|
56 |
-
"Costa Rica": {"iso": "CRI", "emoji": "🇨🇷"},
|
57 |
-
"Cuba": {"iso": "CUB", "emoji": "🇨🇺"},
|
58 |
-
"Ecuador": {"iso": "ECU", "emoji": "🇪🇨"},
|
59 |
-
"El Salvador": {"iso": "SLV", "emoji": "🇸🇻"},
|
60 |
-
"España": {"iso": "ESP", "emoji": "🇪🇸"},
|
61 |
-
"Guatemala": {"iso": "GTM", "emoji": "🇬🇹"},
|
62 |
-
"Honduras": {"iso": "HND", "emoji": "🇭🇳"},
|
63 |
-
"México": {"iso": "MEX", "emoji": "🇲🇽"},
|
64 |
-
"Nicaragua": {"iso": "NIC", "emoji": "🇳🇮"},
|
65 |
-
"Panamá": {"iso": "PAN", "emoji": "🇵🇦"},
|
66 |
-
"Paraguay": {"iso": "PRY", "emoji": "🇵🇾"},
|
67 |
-
"Perú": {"iso": "PER", "emoji": "🇵🇪"},
|
68 |
-
"Puerto Rico": {"iso": "PRI", "emoji": "🇵🇷"},
|
69 |
-
"República Dominicana": {"iso": "DOM", "emoji": "🇩🇴"},
|
70 |
-
"Uruguay": {"iso": "URY", "emoji": "🇺🇾"},
|
71 |
-
"Venezuela": {"iso": "VEN", "emoji": "🇻🇪"},
|
72 |
-
}
|
73 |
-
|
74 |
-
|
75 |
-
@lru_cache(maxsize=1)
|
76 |
-
def get_user_mapping():
|
77 |
-
"""Get cached mapping of emails and hf_usernames to discord usernames."""
|
78 |
-
if not os.path.exists(PARTICIPANTS_CSV):
|
79 |
-
return {}, {}
|
80 |
-
|
81 |
-
try:
|
82 |
-
df = pd.read_csv(PARTICIPANTS_CSV)
|
83 |
-
email_to_discord = {}
|
84 |
-
hf_to_discord = {}
|
85 |
-
|
86 |
-
for _, row in df.iterrows():
|
87 |
-
discord = row.get(COLUMN_MAP["discord"], "")
|
88 |
-
if pd.notna(discord) and discord != "NA":
|
89 |
-
discord_lower = discord.lower()
|
90 |
-
|
91 |
-
# Map email to discord
|
92 |
-
gmail = row.get(COLUMN_MAP["gmail"], "")
|
93 |
-
if pd.notna(gmail):
|
94 |
-
email_to_discord[gmail.lower()] = discord_lower
|
95 |
-
|
96 |
-
# Map hf_username to discord
|
97 |
-
hf_username = row.get(COLUMN_MAP["hf_username"], "")
|
98 |
-
if pd.notna(hf_username):
|
99 |
-
hf_to_discord[hf_username.lower()] = discord_lower
|
100 |
-
|
101 |
-
return email_to_discord, hf_to_discord
|
102 |
-
except Exception as e:
|
103 |
-
print(f"Error loading {PARTICIPANTS_CSV}: {e}")
|
104 |
-
return {}, {}
|
105 |
-
|
106 |
-
|
107 |
-
def get_discord_username(identifier):
|
108 |
-
"""Get discord username from email or hf_username."""
|
109 |
-
email_to_discord, hf_to_discord = get_user_mapping()
|
110 |
-
|
111 |
-
if "@" in identifier:
|
112 |
-
return email_to_discord.get(identifier.lower(), identifier.split("@")[0])
|
113 |
-
|
114 |
-
return hf_to_discord.get(identifier.lower(), identifier)
|
115 |
-
|
116 |
-
|
117 |
-
def get_participant_info():
|
118 |
-
"""Get participant information from CSV."""
|
119 |
-
if not os.path.exists(PARTICIPANTS_CSV):
|
120 |
-
return {}
|
121 |
-
|
122 |
-
try:
|
123 |
-
df = pd.read_csv(PARTICIPANTS_CSV)
|
124 |
-
participant_info = {}
|
125 |
-
|
126 |
-
for _, row in df.iterrows():
|
127 |
-
discord_username = row.get(COLUMN_MAP["discord"], "")
|
128 |
-
if pd.notna(discord_username) and discord_username != "NA":
|
129 |
-
participant_info[discord_username.lower()] = {
|
130 |
-
"gmail": row.get(COLUMN_MAP["gmail"], ""),
|
131 |
-
"discord_username": discord_username,
|
132 |
-
"hf_username": row.get(COLUMN_MAP["hf_username"], ""),
|
133 |
-
"email": row.get(COLUMN_MAP["contact_email"], ""),
|
134 |
-
}
|
135 |
-
|
136 |
-
return participant_info
|
137 |
-
except Exception as e:
|
138 |
-
print(f"Error loading participant info: {e}")
|
139 |
-
return {}
|
140 |
-
|
141 |
-
|
142 |
-
def get_team_leaderboard(personal_leaderboard_df):
|
143 |
-
"""Calculate team leaderboard based on personal scores."""
|
144 |
-
if not os.path.exists(EQUIPOS_CSV):
|
145 |
-
return pd.DataFrame()
|
146 |
-
|
147 |
-
try:
|
148 |
-
teams_df = pd.read_csv(EQUIPOS_CSV)
|
149 |
-
team_leaderboard = []
|
150 |
-
|
151 |
-
for _, team_row in teams_df.iterrows():
|
152 |
-
team_name = team_row.get(TEAM_COLUMNS["team_name"], "")
|
153 |
-
if not team_name:
|
154 |
-
continue
|
155 |
-
|
156 |
-
# Get team member emails
|
157 |
-
team_emails = []
|
158 |
-
for i in range(1, 6):
|
159 |
-
email_col = TEAM_COLUMNS[f"email_{i}"]
|
160 |
-
email = team_row.get(email_col, "")
|
161 |
-
if pd.notna(email) and email.strip():
|
162 |
-
team_emails.append(email.lower())
|
163 |
-
|
164 |
-
if not team_emails:
|
165 |
-
continue
|
166 |
-
|
167 |
-
# Map emails to Discord usernames and get scores
|
168 |
-
discord_usernames = []
|
169 |
-
team_scores = {"arena": 0, "blend_es": 0, "estereotipos": 0, "include": 0}
|
170 |
-
|
171 |
-
for email in team_emails:
|
172 |
-
# Get Discord username from email
|
173 |
-
discord_username = get_discord_username(email)
|
174 |
-
discord_usernames.append(discord_username)
|
175 |
-
|
176 |
-
# Find this user in the personal leaderboard
|
177 |
-
user_scores = personal_leaderboard_df[
|
178 |
-
personal_leaderboard_df["Username"].str.lower()
|
179 |
-
== discord_username.lower()
|
180 |
-
]
|
181 |
-
|
182 |
-
if not user_scores.empty:
|
183 |
-
team_scores["arena"] += user_scores.iloc[0]["Arena"]
|
184 |
-
team_scores["blend_es"] += user_scores.iloc[0]["Blend-ES"]
|
185 |
-
team_scores["estereotipos"] += user_scores.iloc[0]["Estereotipos"]
|
186 |
-
team_scores["include"] += user_scores.iloc[0]["INCLUDE"]
|
187 |
-
|
188 |
-
# Pad Discord usernames list to 5 elements
|
189 |
-
while len(discord_usernames) < 5:
|
190 |
-
discord_usernames.append("")
|
191 |
-
|
192 |
-
# Create team row
|
193 |
-
team_row_data = {
|
194 |
-
"team_name": team_name,
|
195 |
-
"discord_1": discord_usernames[0],
|
196 |
-
"discord_2": discord_usernames[1],
|
197 |
-
"discord_3": discord_usernames[2],
|
198 |
-
"discord_4": discord_usernames[3],
|
199 |
-
"discord_5": discord_usernames[4],
|
200 |
-
"total_arena": team_scores["arena"],
|
201 |
-
"ptos_arena": 0, # Set to 0 for now as requested
|
202 |
-
"total_blend_es": team_scores["blend_es"],
|
203 |
-
"ptos_blend_es": 0, # Set to 0 for now as requested
|
204 |
-
"total_estereotipos": team_scores["estereotipos"],
|
205 |
-
"ptos_estereotipos": 0, # Set to 0 for now as requested
|
206 |
-
"total_include": team_scores["include"],
|
207 |
-
"ptos_include": 0, # Set to 0 for now as requested
|
208 |
-
"ptos_total": 0, # Set to 0 for now as requested
|
209 |
-
}
|
210 |
-
|
211 |
-
team_leaderboard.append(team_row_data)
|
212 |
-
|
213 |
-
# Create DataFrame and sort by total_arena
|
214 |
-
if team_leaderboard:
|
215 |
-
team_df = pd.DataFrame(team_leaderboard)
|
216 |
-
team_df.sort_values("total_arena", ascending=False, inplace=True)
|
217 |
-
return team_df
|
218 |
-
else:
|
219 |
-
return pd.DataFrame()
|
220 |
-
|
221 |
-
except Exception as e:
|
222 |
-
print(f"Error calculating team leaderboard: {e}")
|
223 |
-
return pd.DataFrame()
|
224 |
-
|
225 |
-
|
226 |
-
def get_blend_es_data():
|
227 |
-
"""Get blend-es data from Argilla."""
|
228 |
-
if not client:
|
229 |
-
return []
|
230 |
-
|
231 |
-
data = []
|
232 |
-
for country, info in countries.items():
|
233 |
-
dataset_name = f"{info['emoji']} {country} - {info['iso']} - Responder"
|
234 |
-
|
235 |
-
try:
|
236 |
-
dataset = client.datasets(dataset_name)
|
237 |
-
records = list(dataset.records(with_responses=True))
|
238 |
-
|
239 |
-
user_counts = defaultdict(int)
|
240 |
-
user_mapping = {}
|
241 |
-
|
242 |
-
for record in records:
|
243 |
-
if "answer_1" in record.responses:
|
244 |
-
for answer in record.responses["answer_1"]:
|
245 |
-
if answer.user_id:
|
246 |
-
user_id = answer.user_id
|
247 |
-
user_counts[user_id] += 1
|
248 |
-
|
249 |
-
if user_id not in user_mapping:
|
250 |
-
try:
|
251 |
-
user = client.users(id=user_id)
|
252 |
-
user_mapping[user_id] = user.username
|
253 |
-
except:
|
254 |
-
user_mapping[user_id] = f"User-{user_id[:8]}"
|
255 |
-
|
256 |
-
for user_id, count in user_counts.items():
|
257 |
-
hf_username = user_mapping.get(user_id, f"User-{user_id[:8]}")
|
258 |
-
username = get_discord_username(hf_username)
|
259 |
-
data.append(
|
260 |
-
{"source": "blend-es", "username": username, "count": count}
|
261 |
-
)
|
262 |
-
|
263 |
-
except Exception as e:
|
264 |
-
print(f"Error processing {dataset_name}: {e}")
|
265 |
-
|
266 |
-
return data
|
267 |
-
|
268 |
-
|
269 |
-
def get_include_data():
|
270 |
-
"""Get include data from CSV."""
|
271 |
-
csv_path = os.path.join(DATA_DIR, "include.csv")
|
272 |
-
if not os.path.exists(csv_path):
|
273 |
-
return []
|
274 |
-
|
275 |
-
try:
|
276 |
-
df = pd.read_csv(csv_path)
|
277 |
-
username_col = "Nombre en Discord / username"
|
278 |
-
questions_col = "Total preguntas hackathon"
|
279 |
-
|
280 |
-
if username_col not in df.columns or questions_col not in df.columns:
|
281 |
-
return []
|
282 |
-
|
283 |
-
user_counts = defaultdict(int)
|
284 |
-
for _, row in df.iterrows():
|
285 |
-
username = row[username_col][1:] if pd.notna(row[username_col]) else ""
|
286 |
-
questions = row[questions_col] if pd.notna(row[questions_col]) else 0
|
287 |
-
if username and questions:
|
288 |
-
user_counts[username.lower()] += int(questions)
|
289 |
-
|
290 |
-
return [
|
291 |
-
{"source": "include", "username": username, "count": count}
|
292 |
-
for username, count in user_counts.items()
|
293 |
-
]
|
294 |
-
except Exception as e:
|
295 |
-
print(f"Error loading include data: {e}")
|
296 |
-
return []
|
297 |
-
|
298 |
-
|
299 |
-
def get_estereotipos_data():
|
300 |
-
"""Get estereotipos data from CSV."""
|
301 |
-
csv_path = os.path.join(DATA_DIR, "stereotypes.csv")
|
302 |
-
if not os.path.exists(csv_path):
|
303 |
-
return []
|
304 |
-
|
305 |
-
try:
|
306 |
-
df = pd.read_csv(csv_path)
|
307 |
-
if "token_id" not in df.columns or "count" not in df.columns:
|
308 |
-
return []
|
309 |
-
|
310 |
-
user_counts = defaultdict(int)
|
311 |
-
for _, row in df.iterrows():
|
312 |
-
mail = row.get("token_id", "")
|
313 |
-
count = row.get("count", 0)
|
314 |
-
if pd.notna(mail) and pd.notna(count):
|
315 |
-
user_counts[mail.lower()] += int(count)
|
316 |
-
|
317 |
-
return [
|
318 |
-
{
|
319 |
-
"source": "include",
|
320 |
-
"username": get_discord_username(mail),
|
321 |
-
"count": count,
|
322 |
-
}
|
323 |
-
for mail, count in user_counts.items()
|
324 |
-
]
|
325 |
-
except Exception as e:
|
326 |
-
print(f"Error loading estereotipos data: {e}")
|
327 |
-
return []
|
328 |
-
|
329 |
-
|
330 |
-
def get_arena_data():
|
331 |
-
"""Get arena data from JSON."""
|
332 |
-
json_path = os.path.join(DATA_DIR, "arena.json")
|
333 |
-
if not os.path.exists(json_path):
|
334 |
-
return []
|
335 |
-
|
336 |
-
try:
|
337 |
-
with open(json_path, "r", encoding="utf-8") as f:
|
338 |
-
arena_data = json.load(f)
|
339 |
-
|
340 |
-
user_counts = defaultdict(int)
|
341 |
-
for conversations in arena_data.values():
|
342 |
-
for conversation in conversations:
|
343 |
-
if username := conversation.get("username"):
|
344 |
-
user_counts[username.lower()] += 1
|
345 |
-
|
346 |
-
return [
|
347 |
-
{"source": "arena", "username": get_discord_username(mail), "count": count}
|
348 |
-
for mail, count in user_counts.items()
|
349 |
-
]
|
350 |
-
except Exception as e:
|
351 |
-
print(f"Error loading arena data: {e}")
|
352 |
-
return []
|
353 |
-
|
354 |
-
|
355 |
-
def consolidate_all_data():
|
356 |
-
"""Consolidate all data sources and create leaderboard."""
|
357 |
-
# Collect all data
|
358 |
-
all_data = (
|
359 |
-
get_blend_es_data()
|
360 |
-
+ get_include_data()
|
361 |
-
+ get_estereotipos_data()
|
362 |
-
+ get_arena_data()
|
363 |
-
)
|
364 |
-
|
365 |
-
# Get participant info
|
366 |
-
participant_info = get_participant_info()
|
367 |
-
|
368 |
-
# Aggregate user contributions
|
369 |
-
user_contributions = defaultdict(
|
370 |
-
lambda: {
|
371 |
-
"username": "",
|
372 |
-
"gmail": "",
|
373 |
-
"discord_username": "",
|
374 |
-
"hf_username": "",
|
375 |
-
"email": "",
|
376 |
-
"blend_es": 0,
|
377 |
-
"include": 0,
|
378 |
-
"estereotipos": 0,
|
379 |
-
"arena": 0,
|
380 |
-
}
|
381 |
-
)
|
382 |
-
|
383 |
-
for item in all_data:
|
384 |
-
source = item["source"]
|
385 |
-
username = item["username"]
|
386 |
-
count = item["count"]
|
387 |
-
user_key = username.lower()
|
388 |
-
|
389 |
-
if not user_contributions[user_key]["username"]:
|
390 |
-
user_contributions[user_key]["username"] = username
|
391 |
-
if username.lower() in participant_info:
|
392 |
-
info = participant_info[username.lower()]
|
393 |
-
user_contributions[user_key].update(
|
394 |
-
{
|
395 |
-
"gmail": info["gmail"],
|
396 |
-
"discord_username": info["discord_username"],
|
397 |
-
"hf_username": info["hf_username"],
|
398 |
-
"email": info["email"],
|
399 |
-
}
|
400 |
-
)
|
401 |
-
|
402 |
-
if source == "blend-es":
|
403 |
-
user_contributions[user_key]["blend_es"] += count
|
404 |
-
elif source == "include":
|
405 |
-
user_contributions[user_key]["include"] += count
|
406 |
-
elif source == "estereotipos":
|
407 |
-
user_contributions[user_key]["estereotipos"] += count
|
408 |
-
elif source == "arena":
|
409 |
-
user_contributions[user_key]["arena"] += count
|
410 |
-
|
411 |
-
# Create dataframes
|
412 |
-
full_rows = []
|
413 |
-
display_rows = []
|
414 |
-
|
415 |
-
for data in user_contributions.values():
|
416 |
-
# Full data for CSV
|
417 |
-
full_rows.append(
|
418 |
-
{
|
419 |
-
"Username": data["username"],
|
420 |
-
"Gmail": data["gmail"],
|
421 |
-
"Discord_Username": data["discord_username"],
|
422 |
-
"HF_Username": data["hf_username"],
|
423 |
-
"Email": data["email"],
|
424 |
-
"Arena": data["arena"],
|
425 |
-
"Blend-ES": data["blend_es"],
|
426 |
-
"Estereotipos": data["estereotipos"],
|
427 |
-
"INCLUDE": data["include"],
|
428 |
-
}
|
429 |
-
)
|
430 |
-
|
431 |
-
# Display data for UI (public)
|
432 |
-
display_rows.append(
|
433 |
-
{
|
434 |
-
"Username": data["username"],
|
435 |
-
"Arena": data["arena"],
|
436 |
-
"Blend-ES": data["blend_es"],
|
437 |
-
"Estereotipos": data["estereotipos"],
|
438 |
-
"INCLUDE": data["include"],
|
439 |
-
}
|
440 |
-
)
|
441 |
-
|
442 |
-
# Save full data to CSV
|
443 |
-
full_df = pd.DataFrame(full_rows)
|
444 |
-
if not full_df.empty:
|
445 |
-
full_df.sort_values("Arena", ascending=False, inplace=True)
|
446 |
-
full_df.to_csv(LEADERBOARD_PERSONAL_CSV, index=False, encoding="utf-8")
|
447 |
-
|
448 |
-
# Generate and save team leaderboard
|
449 |
-
team_df = get_team_leaderboard(full_df)
|
450 |
-
if not team_df.empty:
|
451 |
-
team_df.to_csv(LEADERBOARD_EQUIPOS_CSV, index=False, encoding="utf-8")
|
452 |
-
|
453 |
-
# Return display dataframe for UI
|
454 |
-
display_df = pd.DataFrame(display_rows)
|
455 |
-
if not display_df.empty:
|
456 |
-
display_df.sort_values("Arena", ascending=False, inplace=True)
|
457 |
-
|
458 |
-
return display_df
|
459 |
|
|
|
460 |
|
461 |
# FastAPI app
|
462 |
app = FastAPI()
|
@@ -474,7 +30,7 @@ def create_leaderboard_ui():
|
|
474 |
if cached_data is not None and current_time - last_update_time < 300:
|
475 |
df = cached_data
|
476 |
else:
|
477 |
-
df =
|
478 |
cached_data = df
|
479 |
last_update_time = current_time
|
480 |
|
|
|
10 |
from dotenv import load_dotenv
|
11 |
from fastapi import FastAPI
|
12 |
|
13 |
+
from calculate_scores import calculate_scores
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
load_dotenv()
|
16 |
|
17 |
# FastAPI app
|
18 |
app = FastAPI()
|
|
|
30 |
if cached_data is not None and current_time - last_update_time < 300:
|
31 |
df = cached_data
|
32 |
else:
|
33 |
+
df = calculate_scores()
|
34 |
cached_data = df
|
35 |
last_update_time = current_time
|
36 |
|
calculate_scores.py
ADDED
@@ -0,0 +1,462 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
from collections import defaultdict
|
5 |
+
from functools import lru_cache
|
6 |
+
|
7 |
+
import argilla as rg
|
8 |
+
import gradio as gr
|
9 |
+
import pandas as pd
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
from fastapi import FastAPI
|
12 |
+
|
13 |
+
load_dotenv()
|
14 |
+
|
15 |
+
# Constants
|
16 |
+
DATA_DIR = "data"
|
17 |
+
PARTICIPANTS_CSV = os.path.join(DATA_DIR, "participants.csv")
|
18 |
+
EQUIPOS_CSV = os.path.join(DATA_DIR, "equipos.csv")
|
19 |
+
LEADERBOARD_PERSONAL_CSV = "leaderboard_personal.csv"
|
20 |
+
LEADERBOARD_EQUIPOS_CSV = "leaderboard_equipos.csv"
|
21 |
+
|
22 |
+
# Column mappings for participants info
|
23 |
+
COLUMN_MAP = {
|
24 |
+
"gmail": "Dirección de correo electrónico",
|
25 |
+
"discord": "¿Cuál es tu nombre en Discord?",
|
26 |
+
"hf_username": "¿Cuál es tu nombre en el Hub de Hugging Face?",
|
27 |
+
"contact_email": "Email de contacto",
|
28 |
+
}
|
29 |
+
|
30 |
+
# Column mappings for teams info
|
31 |
+
TEAM_COLUMNS = {
|
32 |
+
"team_name": "Nombre del equipo",
|
33 |
+
"email_1": "Email 1",
|
34 |
+
"email_2": "Email 2",
|
35 |
+
"email_3": "Email 3",
|
36 |
+
"email_4": "Email 4",
|
37 |
+
"email_5": "Email 5",
|
38 |
+
}
|
39 |
+
|
40 |
+
# Initialize Argilla client
|
41 |
+
try:
|
42 |
+
client = rg.Argilla(
|
43 |
+
api_url=os.getenv("ARGILLA_API_URL", ""),
|
44 |
+
api_key=os.getenv("ARGILLA_API_KEY", ""),
|
45 |
+
)
|
46 |
+
except Exception as e:
|
47 |
+
print(f"Error initializing Argilla client: {e}")
|
48 |
+
client = None
|
49 |
+
|
50 |
+
# Countries data
|
51 |
+
countries = {
|
52 |
+
"Argentina": {"iso": "ARG", "emoji": "🇦🇷"},
|
53 |
+
"Bolivia": {"iso": "BOL", "emoji": "🇧🇴"},
|
54 |
+
"Chile": {"iso": "CHL", "emoji": "🇨🇱"},
|
55 |
+
"Colombia": {"iso": "COL", "emoji": "🇨🇴"},
|
56 |
+
"Costa Rica": {"iso": "CRI", "emoji": "🇨🇷"},
|
57 |
+
"Cuba": {"iso": "CUB", "emoji": "🇨🇺"},
|
58 |
+
"Ecuador": {"iso": "ECU", "emoji": "🇪🇨"},
|
59 |
+
"El Salvador": {"iso": "SLV", "emoji": "🇸🇻"},
|
60 |
+
"España": {"iso": "ESP", "emoji": "🇪🇸"},
|
61 |
+
"Guatemala": {"iso": "GTM", "emoji": "🇬🇹"},
|
62 |
+
"Honduras": {"iso": "HND", "emoji": "🇭🇳"},
|
63 |
+
"México": {"iso": "MEX", "emoji": "🇲🇽"},
|
64 |
+
"Nicaragua": {"iso": "NIC", "emoji": "🇳🇮"},
|
65 |
+
"Panamá": {"iso": "PAN", "emoji": "🇵🇦"},
|
66 |
+
"Paraguay": {"iso": "PRY", "emoji": "🇵🇾"},
|
67 |
+
"Perú": {"iso": "PER", "emoji": "🇵🇪"},
|
68 |
+
"Puerto Rico": {"iso": "PRI", "emoji": "🇵🇷"},
|
69 |
+
"República Dominicana": {"iso": "DOM", "emoji": "🇩🇴"},
|
70 |
+
"Uruguay": {"iso": "URY", "emoji": "🇺🇾"},
|
71 |
+
"Venezuela": {"iso": "VEN", "emoji": "🇻🇪"},
|
72 |
+
}
|
73 |
+
|
74 |
+
|
75 |
+
@lru_cache(maxsize=1)
|
76 |
+
def get_user_mapping():
|
77 |
+
"""Get cached mapping of emails and hf_usernames to discord usernames."""
|
78 |
+
if not os.path.exists(PARTICIPANTS_CSV):
|
79 |
+
return {}, {}
|
80 |
+
|
81 |
+
try:
|
82 |
+
df = pd.read_csv(PARTICIPANTS_CSV)
|
83 |
+
email_to_discord = {}
|
84 |
+
hf_to_discord = {}
|
85 |
+
|
86 |
+
for _, row in df.iterrows():
|
87 |
+
discord = row.get(COLUMN_MAP["discord"], "")
|
88 |
+
if pd.notna(discord) and discord != "NA":
|
89 |
+
discord_lower = discord.lower()
|
90 |
+
|
91 |
+
# Map email to discord
|
92 |
+
gmail = row.get(COLUMN_MAP["gmail"], "")
|
93 |
+
if pd.notna(gmail):
|
94 |
+
email_to_discord[gmail.lower()] = discord_lower
|
95 |
+
|
96 |
+
# Map hf_username to discord
|
97 |
+
hf_username = row.get(COLUMN_MAP["hf_username"], "")
|
98 |
+
if pd.notna(hf_username):
|
99 |
+
hf_to_discord[hf_username.lower()] = discord_lower
|
100 |
+
|
101 |
+
return email_to_discord, hf_to_discord
|
102 |
+
except Exception as e:
|
103 |
+
print(f"Error loading {PARTICIPANTS_CSV}: {e}")
|
104 |
+
return {}, {}
|
105 |
+
|
106 |
+
|
107 |
+
def get_discord_username(identifier):
|
108 |
+
"""Get discord username from email or hf_username."""
|
109 |
+
email_to_discord, hf_to_discord = get_user_mapping()
|
110 |
+
|
111 |
+
if "@" in identifier:
|
112 |
+
return email_to_discord.get(identifier.lower(), identifier.split("@")[0])
|
113 |
+
|
114 |
+
return hf_to_discord.get(identifier.lower(), identifier)
|
115 |
+
|
116 |
+
|
117 |
+
def get_participant_info():
|
118 |
+
"""Get participant information from CSV."""
|
119 |
+
if not os.path.exists(PARTICIPANTS_CSV):
|
120 |
+
return {}
|
121 |
+
|
122 |
+
try:
|
123 |
+
df = pd.read_csv(PARTICIPANTS_CSV)
|
124 |
+
participant_info = {}
|
125 |
+
|
126 |
+
for _, row in df.iterrows():
|
127 |
+
discord_username = row.get(COLUMN_MAP["discord"], "")
|
128 |
+
if pd.notna(discord_username) and discord_username != "NA":
|
129 |
+
participant_info[discord_username.lower()] = {
|
130 |
+
"gmail": row.get(COLUMN_MAP["gmail"], ""),
|
131 |
+
"discord_username": discord_username,
|
132 |
+
"hf_username": row.get(COLUMN_MAP["hf_username"], ""),
|
133 |
+
"email": row.get(COLUMN_MAP["contact_email"], ""),
|
134 |
+
}
|
135 |
+
|
136 |
+
return participant_info
|
137 |
+
except Exception as e:
|
138 |
+
print(f"Error loading participant info: {e}")
|
139 |
+
return {}
|
140 |
+
|
141 |
+
|
142 |
+
def get_team_leaderboard(personal_leaderboard_df):
|
143 |
+
"""Calculate team leaderboard based on personal scores."""
|
144 |
+
if not os.path.exists(EQUIPOS_CSV):
|
145 |
+
return pd.DataFrame()
|
146 |
+
|
147 |
+
try:
|
148 |
+
teams_df = pd.read_csv(EQUIPOS_CSV)
|
149 |
+
team_leaderboard = []
|
150 |
+
|
151 |
+
for _, team_row in teams_df.iterrows():
|
152 |
+
team_name = team_row.get(TEAM_COLUMNS["team_name"], "")
|
153 |
+
if not team_name:
|
154 |
+
continue
|
155 |
+
|
156 |
+
# Get team member emails
|
157 |
+
team_emails = []
|
158 |
+
for i in range(1, 6):
|
159 |
+
email_col = TEAM_COLUMNS[f"email_{i}"]
|
160 |
+
email = team_row.get(email_col, "")
|
161 |
+
if pd.notna(email) and email.strip():
|
162 |
+
team_emails.append(email.lower())
|
163 |
+
|
164 |
+
if not team_emails:
|
165 |
+
continue
|
166 |
+
|
167 |
+
# Map emails to Discord usernames and get scores
|
168 |
+
discord_usernames = []
|
169 |
+
team_scores = {"arena": 0, "blend_es": 0, "estereotipos": 0, "include": 0}
|
170 |
+
|
171 |
+
for email in team_emails:
|
172 |
+
# Get Discord username from email
|
173 |
+
discord_username = get_discord_username(email)
|
174 |
+
discord_usernames.append(discord_username)
|
175 |
+
|
176 |
+
# Find this user in the personal leaderboard
|
177 |
+
user_scores = personal_leaderboard_df[
|
178 |
+
personal_leaderboard_df["Username"].str.lower()
|
179 |
+
== discord_username.lower()
|
180 |
+
]
|
181 |
+
|
182 |
+
if not user_scores.empty:
|
183 |
+
team_scores["arena"] += user_scores.iloc[0]["Arena"]
|
184 |
+
team_scores["blend_es"] += user_scores.iloc[0]["Blend-ES"]
|
185 |
+
team_scores["estereotipos"] += user_scores.iloc[0]["Estereotipos"]
|
186 |
+
team_scores["include"] += user_scores.iloc[0]["INCLUDE"]
|
187 |
+
|
188 |
+
# Pad Discord usernames list to 5 elements
|
189 |
+
while len(discord_usernames) < 5:
|
190 |
+
discord_usernames.append("")
|
191 |
+
|
192 |
+
# Create team row
|
193 |
+
team_row_data = {
|
194 |
+
"team_name": team_name,
|
195 |
+
"discord_1": discord_usernames[0],
|
196 |
+
"discord_2": discord_usernames[1],
|
197 |
+
"discord_3": discord_usernames[2],
|
198 |
+
"discord_4": discord_usernames[3],
|
199 |
+
"discord_5": discord_usernames[4],
|
200 |
+
"total_arena": team_scores["arena"],
|
201 |
+
"ptos_arena": 0, # Set to 0 for now as requested
|
202 |
+
"total_blend_es": team_scores["blend_es"],
|
203 |
+
"ptos_blend_es": 0, # Set to 0 for now as requested
|
204 |
+
"total_estereotipos": team_scores["estereotipos"],
|
205 |
+
"ptos_estereotipos": 0, # Set to 0 for now as requested
|
206 |
+
"total_include": team_scores["include"],
|
207 |
+
"ptos_include": 0, # Set to 0 for now as requested
|
208 |
+
"ptos_total": 0, # Set to 0 for now as requested
|
209 |
+
}
|
210 |
+
|
211 |
+
team_leaderboard.append(team_row_data)
|
212 |
+
|
213 |
+
# Create DataFrame and sort by total_arena
|
214 |
+
if team_leaderboard:
|
215 |
+
team_df = pd.DataFrame(team_leaderboard)
|
216 |
+
team_df.sort_values("total_arena", ascending=False, inplace=True)
|
217 |
+
return team_df
|
218 |
+
else:
|
219 |
+
return pd.DataFrame()
|
220 |
+
|
221 |
+
except Exception as e:
|
222 |
+
print(f"Error calculating team leaderboard: {e}")
|
223 |
+
return pd.DataFrame()
|
224 |
+
|
225 |
+
|
226 |
+
def get_blend_es_data():
|
227 |
+
"""Get blend-es data from Argilla."""
|
228 |
+
if not client:
|
229 |
+
return []
|
230 |
+
|
231 |
+
data = []
|
232 |
+
for country, info in countries.items():
|
233 |
+
dataset_name = f"{info['emoji']} {country} - {info['iso']} - Responder"
|
234 |
+
|
235 |
+
try:
|
236 |
+
dataset = client.datasets(dataset_name)
|
237 |
+
records = list(dataset.records(with_responses=True))
|
238 |
+
|
239 |
+
user_counts = defaultdict(int)
|
240 |
+
user_mapping = {}
|
241 |
+
|
242 |
+
for record in records:
|
243 |
+
if "answer_1" in record.responses:
|
244 |
+
for answer in record.responses["answer_1"]:
|
245 |
+
if answer.user_id:
|
246 |
+
user_id = answer.user_id
|
247 |
+
user_counts[user_id] += 1
|
248 |
+
|
249 |
+
if user_id not in user_mapping:
|
250 |
+
try:
|
251 |
+
user = client.users(id=user_id)
|
252 |
+
user_mapping[user_id] = user.username
|
253 |
+
except:
|
254 |
+
user_mapping[user_id] = f"User-{user_id[:8]}"
|
255 |
+
|
256 |
+
for user_id, count in user_counts.items():
|
257 |
+
hf_username = user_mapping.get(user_id, f"User-{user_id[:8]}")
|
258 |
+
username = get_discord_username(hf_username)
|
259 |
+
data.append(
|
260 |
+
{"source": "blend-es", "username": username, "count": count}
|
261 |
+
)
|
262 |
+
|
263 |
+
except Exception as e:
|
264 |
+
print(f"Error processing {dataset_name}: {e}")
|
265 |
+
|
266 |
+
return data
|
267 |
+
|
268 |
+
|
269 |
+
def get_include_data():
|
270 |
+
"""Get include data from CSV."""
|
271 |
+
csv_path = os.path.join(DATA_DIR, "include.csv")
|
272 |
+
if not os.path.exists(csv_path):
|
273 |
+
return []
|
274 |
+
|
275 |
+
try:
|
276 |
+
df = pd.read_csv(csv_path)
|
277 |
+
username_col = "Nombre en Discord / username"
|
278 |
+
questions_col = "Total preguntas hackathon"
|
279 |
+
|
280 |
+
if username_col not in df.columns or questions_col not in df.columns:
|
281 |
+
return []
|
282 |
+
|
283 |
+
user_counts = defaultdict(int)
|
284 |
+
for _, row in df.iterrows():
|
285 |
+
username = row[username_col][1:] if pd.notna(row[username_col]) else ""
|
286 |
+
questions = row[questions_col] if pd.notna(row[questions_col]) else 0
|
287 |
+
if username and questions:
|
288 |
+
user_counts[username.lower()] += int(questions)
|
289 |
+
|
290 |
+
return [
|
291 |
+
{"source": "include", "username": username, "count": count}
|
292 |
+
for username, count in user_counts.items()
|
293 |
+
]
|
294 |
+
except Exception as e:
|
295 |
+
print(f"Error loading include data: {e}")
|
296 |
+
return []
|
297 |
+
|
298 |
+
|
299 |
+
def get_estereotipos_data():
|
300 |
+
"""Get estereotipos data from CSV."""
|
301 |
+
csv_path = os.path.join(DATA_DIR, "stereotypes.csv")
|
302 |
+
if not os.path.exists(csv_path):
|
303 |
+
return []
|
304 |
+
|
305 |
+
try:
|
306 |
+
df = pd.read_csv(csv_path)
|
307 |
+
if "token_id" not in df.columns or "count" not in df.columns:
|
308 |
+
return []
|
309 |
+
|
310 |
+
user_counts = defaultdict(int)
|
311 |
+
for _, row in df.iterrows():
|
312 |
+
mail = row.get("token_id", "")
|
313 |
+
count = row.get("count", 0)
|
314 |
+
if pd.notna(mail) and pd.notna(count):
|
315 |
+
user_counts[mail.lower()] += int(count)
|
316 |
+
|
317 |
+
return [
|
318 |
+
{
|
319 |
+
"source": "include",
|
320 |
+
"username": get_discord_username(mail),
|
321 |
+
"count": count,
|
322 |
+
}
|
323 |
+
for mail, count in user_counts.items()
|
324 |
+
]
|
325 |
+
except Exception as e:
|
326 |
+
print(f"Error loading estereotipos data: {e}")
|
327 |
+
return []
|
328 |
+
|
329 |
+
|
330 |
+
def get_arena_data():
|
331 |
+
"""Get arena data from JSON."""
|
332 |
+
json_path = os.path.join(DATA_DIR, "arena.json")
|
333 |
+
if not os.path.exists(json_path):
|
334 |
+
return []
|
335 |
+
|
336 |
+
try:
|
337 |
+
with open(json_path, "r", encoding="utf-8") as f:
|
338 |
+
arena_data = json.load(f)
|
339 |
+
|
340 |
+
user_counts = defaultdict(int)
|
341 |
+
for conversations in arena_data.values():
|
342 |
+
for conversation in conversations:
|
343 |
+
if username := conversation.get("username"):
|
344 |
+
user_counts[username.lower()] += 1
|
345 |
+
|
346 |
+
return [
|
347 |
+
{"source": "arena", "username": get_discord_username(mail), "count": count}
|
348 |
+
for mail, count in user_counts.items()
|
349 |
+
]
|
350 |
+
except Exception as e:
|
351 |
+
print(f"Error loading arena data: {e}")
|
352 |
+
return []
|
353 |
+
|
354 |
+
|
355 |
+
def calculate_scores():
|
356 |
+
"""Consolidate all data sources and create leaderboard."""
|
357 |
+
# Collect all data
|
358 |
+
all_data = (
|
359 |
+
get_blend_es_data()
|
360 |
+
+ get_include_data()
|
361 |
+
+ get_estereotipos_data()
|
362 |
+
+ get_arena_data()
|
363 |
+
)
|
364 |
+
|
365 |
+
# Get participant info
|
366 |
+
participant_info = get_participant_info()
|
367 |
+
|
368 |
+
# Aggregate user contributions
|
369 |
+
user_contributions = defaultdict(
|
370 |
+
lambda: {
|
371 |
+
"username": "",
|
372 |
+
"gmail": "",
|
373 |
+
"discord_username": "",
|
374 |
+
"hf_username": "",
|
375 |
+
"email": "",
|
376 |
+
"blend_es": 0,
|
377 |
+
"include": 0,
|
378 |
+
"estereotipos": 0,
|
379 |
+
"arena": 0,
|
380 |
+
}
|
381 |
+
)
|
382 |
+
|
383 |
+
for item in all_data:
|
384 |
+
source = item["source"]
|
385 |
+
username = item["username"]
|
386 |
+
count = item["count"]
|
387 |
+
user_key = username.lower()
|
388 |
+
|
389 |
+
if not user_contributions[user_key]["username"]:
|
390 |
+
user_contributions[user_key]["username"] = username
|
391 |
+
if username.lower() in participant_info:
|
392 |
+
info = participant_info[username.lower()]
|
393 |
+
user_contributions[user_key].update(
|
394 |
+
{
|
395 |
+
"gmail": info["gmail"],
|
396 |
+
"discord_username": info["discord_username"],
|
397 |
+
"hf_username": info["hf_username"],
|
398 |
+
"email": info["email"],
|
399 |
+
}
|
400 |
+
)
|
401 |
+
|
402 |
+
if source == "blend-es":
|
403 |
+
user_contributions[user_key]["blend_es"] += count
|
404 |
+
elif source == "include":
|
405 |
+
user_contributions[user_key]["include"] += count
|
406 |
+
elif source == "estereotipos":
|
407 |
+
user_contributions[user_key]["estereotipos"] += count
|
408 |
+
elif source == "arena":
|
409 |
+
user_contributions[user_key]["arena"] += count
|
410 |
+
|
411 |
+
# Create dataframes
|
412 |
+
full_rows = []
|
413 |
+
display_rows = []
|
414 |
+
|
415 |
+
for data in user_contributions.values():
|
416 |
+
# Full data for CSV
|
417 |
+
full_rows.append(
|
418 |
+
{
|
419 |
+
"Username": data["username"],
|
420 |
+
"Gmail": data["gmail"],
|
421 |
+
"Discord_Username": data["discord_username"],
|
422 |
+
"HF_Username": data["hf_username"],
|
423 |
+
"Email": data["email"],
|
424 |
+
"Arena": data["arena"],
|
425 |
+
"Blend-ES": data["blend_es"],
|
426 |
+
"Estereotipos": data["estereotipos"],
|
427 |
+
"INCLUDE": data["include"],
|
428 |
+
}
|
429 |
+
)
|
430 |
+
|
431 |
+
# Display data for UI (public)
|
432 |
+
display_rows.append(
|
433 |
+
{
|
434 |
+
"Username": data["username"],
|
435 |
+
"Arena": data["arena"],
|
436 |
+
"Blend-ES": data["blend_es"],
|
437 |
+
"Estereotipos": data["estereotipos"],
|
438 |
+
"INCLUDE": data["include"],
|
439 |
+
}
|
440 |
+
)
|
441 |
+
|
442 |
+
# Save full data to CSV
|
443 |
+
full_df = pd.DataFrame(full_rows)
|
444 |
+
if not full_df.empty:
|
445 |
+
full_df.sort_values("Arena", ascending=False, inplace=True)
|
446 |
+
full_df.to_csv(LEADERBOARD_PERSONAL_CSV, index=False, encoding="utf-8")
|
447 |
+
|
448 |
+
# Generate and save team leaderboard
|
449 |
+
team_df = get_team_leaderboard(full_df)
|
450 |
+
if not team_df.empty:
|
451 |
+
team_df.to_csv(LEADERBOARD_EQUIPOS_CSV, index=False, encoding="utf-8")
|
452 |
+
|
453 |
+
# Return display dataframe for UI
|
454 |
+
display_df = pd.DataFrame(display_rows)
|
455 |
+
if not display_df.empty:
|
456 |
+
display_df.sort_values("Arena", ascending=False, inplace=True)
|
457 |
+
|
458 |
+
return display_df
|
459 |
+
|
460 |
+
|
461 |
+
if __name__ == "__main__":
|
462 |
+
calculate_scores()
|