File size: 3,647 Bytes
4d6e8c2
fe4a4cb
 
 
3b09640
8d30d08
 
 
fe4a4cb
79fccb4
 
4d6e8c2
3b09640
 
 
4d6e8c2
 
9fda0e2
1c33274
70f5f26
fe4a4cb
1c33274
70f5f26
4d6e8c2
 
fe4a4cb
8d30d08
70f5f26
fe4a4cb
70f5f26
4d6e8c2
fe4a4cb
4d6e8c2
fe4a4cb
 
 
 
 
 
 
3b09640
8d30d08
 
fe4a4cb
9fda0e2
 
8d30d08
fe4a4cb
 
 
8d30d08
 
fe4a4cb
 
8d30d08
 
 
 
 
 
 
a9e7259
8d30d08
 
 
 
a9e7259
8d30d08
 
 
 
 
 
 
 
 
a9e7259
8d30d08
 
fe4a4cb
8d30d08
 
fe4a4cb
8d30d08
 
fe4a4cb
 
8d30d08
fe4a4cb
 
8d30d08
fe4a4cb
 
4d6e8c2
 
fe4a4cb
70f5f26
fe4a4cb
 
 
 
 
 
4d6e8c2
 
70f5f26
4d6e8c2
fe4a4cb
8d30d08
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import os
import joblib
import librosa
import numpy as np

from .utils.evaluation import AudioEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

from dotenv import load_dotenv
load_dotenv()

router = APIRouter()

DESCRIPTION = "Model 1 : Knn audio classification"
ROUTE = "/audio"


@router.post(ROUTE, tags=["Audio Task"],
             description=DESCRIPTION)
async def evaluate_audio(request: AudioEvaluationRequest):
    """
    Evaluate audio classification for rainforest sound detection.

    Current Model: Random Baseline
    - Makes random predictions from the label space (0-1)
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "chainsaw": 0,
        "environment": 1
    }
    # Load and prepare the dataset
    # Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
    dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))

    # Split dataset
    train_test = dataset["train"]
    test_dataset = dataset["test"]

    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    # --------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    # --------------------------------------------------------------------------------------------
    # data formatting

    def preprocess(dataset):
        features = []
        for row in dataset:
            # Load the audio file and resample it
            target_sr = 6000
            audio = row['audio']['array']
            audio = librosa.resample(audio, orig_sr=12000, target_sr=target_sr)

            # Extract MFCC features
            mfccs = librosa.feature.mfcc(y=audio, sr=target_sr, n_mfcc=7)
            mfccs_scaled = np.mean(mfccs.T, axis=0)

            # Append features and labels
            features.append(mfccs_scaled)

        return np.array(features)

    X_test = preprocess(test_dataset)

    classification_model = joblib.load("./models/audio_classification_knn.pkl")

    predictions = classification_model.predict(X_test)
    true_labels = test_dataset["label"]

    # --------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    # --------------------------------------------------------------------------------------------

    # Stop tracking emissions
    emissions_data = tracker.stop_task()

    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)

    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    return results