Spaces:
Sleeping
Sleeping
File size: 3,657 Bytes
4d6e8c2 fe4a4cb 3b09640 0bc4257 fe4a4cb 4d6e8c2 fe4a4cb 4d6e8c2 3b09640 4d6e8c2 0bc4257 1c33274 70f5f26 fe4a4cb 1c33274 70f5f26 4d6e8c2 fe4a4cb 0bc4257 70f5f26 fe4a4cb 70f5f26 4d6e8c2 fe4a4cb 4d6e8c2 fe4a4cb 3b09640 0bc4257 fe4a4cb 1431ab9 0bc4257 fe4a4cb 0bc4257 fe4a4cb 0bc4257 fe4a4cb 0bc4257 fe4a4cb 0bc4257 fe4a4cb 0bc4257 fe4a4cb 0bc4257 fe4a4cb 4d6e8c2 fe4a4cb 70f5f26 fe4a4cb 4d6e8c2 70f5f26 4d6e8c2 fe4a4cb 0bc4257 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import os
import joblib
import librosa
import numpy as np
from .utils.evaluation import AudioEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from dotenv import load_dotenv
load_dotenv()
router = APIRouter()
DESCRIPTION = "Model 2 : Random Forest audio classification"
ROUTE = "/audio"
@router.post(ROUTE, tags=["Audio Task"],
description=DESCRIPTION)
async def evaluate_audio(request: AudioEvaluationRequest):
"""
Evaluate audio classification for rainforest sound detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-1)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"chainsaw": 0,
"environment": 1
}
# Load and prepare the dataset
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
# Split dataset
train_test = dataset["train"]
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
# --------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
# --------------------------------------------------------------------------------------------
# data formatting
def preprocess(dataset):
features = []
for row in dataset:
# Load the audio file and resample it
target_sr = 6000
audio = row['audio']['array']
audio = librosa.resample(audio, orig_sr=12000, target_sr=target_sr)
# Extract MFCC features
mfccs = librosa.feature.mfcc(y=audio, sr=target_sr, n_mfcc=10)
mfccs_scaled = np.mean(mfccs.T, axis=0)
# Append features and labels
features.append(mfccs_scaled)
return np.array(features)
X_test = preprocess(test_dataset)
classification_model = joblib.load("./models/audio_classification_rf.pkl")
predictions = classification_model.predict(X_test)
true_labels = test_dataset["label"]
# --------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
# --------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results
|