sourav11295 commited on
Commit
fd320cd
·
1 Parent(s): a74ed04

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -10
app.py CHANGED
@@ -20,21 +20,24 @@ from sklearn.tree import DecisionTreeClassifier
20
  from sklearn.ensemble import RandomForestClassifier
21
 
22
  def read(file,dep,ord):
23
- df = pd.read_csv(file.name)
24
  cat = list()
25
  dep_type = str(df.dtypes[dep])
26
  for col in df.columns.values:
27
  if str(df.dtypes[col]) == 'bool' or str(df.dtypes[col]) == 'object':
28
  cat.append(col)
29
- if ord == "":
 
 
 
 
30
  ord = list()
31
  else:
32
- ord = ord.split(',')
33
- ord.append(dep)
 
 
34
  nom = list(set(cat).difference(set(ord)))
35
- le = LabelEncoder()
36
- new_df = df.dropna(axis=0)
37
- new_df[ord] = new_df[ord].apply(lambda col: le.fit_transform(col))
38
  if len(nom) == 0:
39
  pass
40
  else:
@@ -48,7 +51,7 @@ def read(file,dep,ord):
48
  text = "regression"
49
  result = regression(new_df,dep)
50
  return df.sample(5),new_df.sample(5),result, text, cat, ord, nom
51
-
52
  def classification(df,dep):
53
  X = df.drop(dep,axis=1)
54
  y = df[dep]
@@ -113,12 +116,12 @@ def regression(df,dep):
113
  },
114
  ]
115
 
116
- search = GridSearchCV(pipe, param_grid=parameters, cv=5, n_jobs=-1, scoring='r2')
117
  search.fit(X_train,y_train)
118
 
119
  result = pd.DataFrame(search.cv_results_)[['params','rank_test_score','mean_test_score']]
120
 
121
- result['mean_test_score']= (result['mean_test_score'])*100
122
  result = result.astype({'params': str})
123
 
124
  result.sort_values('rank_test_score',inplace=True)
 
20
  from sklearn.ensemble import RandomForestClassifier
21
 
22
  def read(file,dep,ord):
23
+ df = file
24
  cat = list()
25
  dep_type = str(df.dtypes[dep])
26
  for col in df.columns.values:
27
  if str(df.dtypes[col]) == 'bool' or str(df.dtypes[col]) == 'object':
28
  cat.append(col)
29
+ new_df = df.dropna(axis=0)
30
+ if ord == "" and (dep_type == 'bool' or dep_type == 'object'):
31
+ ord = list()
32
+ ord.append(dep)
33
+ elif ord == "":
34
  ord = list()
35
  else:
36
+ pass
37
+ if len(ord)!=0:
38
+ le = LabelEncoder()
39
+ new_df[ord] = new_df[ord].apply(lambda col: le.fit_transform(col))
40
  nom = list(set(cat).difference(set(ord)))
 
 
 
41
  if len(nom) == 0:
42
  pass
43
  else:
 
51
  text = "regression"
52
  result = regression(new_df,dep)
53
  return df.sample(5),new_df.sample(5),result, text, cat, ord, nom
54
+
55
  def classification(df,dep):
56
  X = df.drop(dep,axis=1)
57
  y = df[dep]
 
116
  },
117
  ]
118
 
119
+ search = GridSearchCV(pipe, param_grid=parameters, cv=5, n_jobs=-1, scoring='neg_mean_absolute_percentage_error')
120
  search.fit(X_train,y_train)
121
 
122
  result = pd.DataFrame(search.cv_results_)[['params','rank_test_score','mean_test_score']]
123
 
124
+ result['mean_test_score']= (result['mean_test_score']+1)*100
125
  result = result.astype({'params': str})
126
 
127
  result.sort_values('rank_test_score',inplace=True)