Spaces:
Runtime error
Runtime error
Commit
·
fd320cd
1
Parent(s):
a74ed04
Update app.py
Browse files
app.py
CHANGED
@@ -20,21 +20,24 @@ from sklearn.tree import DecisionTreeClassifier
|
|
20 |
from sklearn.ensemble import RandomForestClassifier
|
21 |
|
22 |
def read(file,dep,ord):
|
23 |
-
df =
|
24 |
cat = list()
|
25 |
dep_type = str(df.dtypes[dep])
|
26 |
for col in df.columns.values:
|
27 |
if str(df.dtypes[col]) == 'bool' or str(df.dtypes[col]) == 'object':
|
28 |
cat.append(col)
|
29 |
-
|
|
|
|
|
|
|
|
|
30 |
ord = list()
|
31 |
else:
|
32 |
-
|
33 |
-
ord
|
|
|
|
|
34 |
nom = list(set(cat).difference(set(ord)))
|
35 |
-
le = LabelEncoder()
|
36 |
-
new_df = df.dropna(axis=0)
|
37 |
-
new_df[ord] = new_df[ord].apply(lambda col: le.fit_transform(col))
|
38 |
if len(nom) == 0:
|
39 |
pass
|
40 |
else:
|
@@ -48,7 +51,7 @@ def read(file,dep,ord):
|
|
48 |
text = "regression"
|
49 |
result = regression(new_df,dep)
|
50 |
return df.sample(5),new_df.sample(5),result, text, cat, ord, nom
|
51 |
-
|
52 |
def classification(df,dep):
|
53 |
X = df.drop(dep,axis=1)
|
54 |
y = df[dep]
|
@@ -113,12 +116,12 @@ def regression(df,dep):
|
|
113 |
},
|
114 |
]
|
115 |
|
116 |
-
search = GridSearchCV(pipe, param_grid=parameters, cv=5, n_jobs=-1, scoring='
|
117 |
search.fit(X_train,y_train)
|
118 |
|
119 |
result = pd.DataFrame(search.cv_results_)[['params','rank_test_score','mean_test_score']]
|
120 |
|
121 |
-
result['mean_test_score']= (result['mean_test_score'])*100
|
122 |
result = result.astype({'params': str})
|
123 |
|
124 |
result.sort_values('rank_test_score',inplace=True)
|
|
|
20 |
from sklearn.ensemble import RandomForestClassifier
|
21 |
|
22 |
def read(file,dep,ord):
|
23 |
+
df = file
|
24 |
cat = list()
|
25 |
dep_type = str(df.dtypes[dep])
|
26 |
for col in df.columns.values:
|
27 |
if str(df.dtypes[col]) == 'bool' or str(df.dtypes[col]) == 'object':
|
28 |
cat.append(col)
|
29 |
+
new_df = df.dropna(axis=0)
|
30 |
+
if ord == "" and (dep_type == 'bool' or dep_type == 'object'):
|
31 |
+
ord = list()
|
32 |
+
ord.append(dep)
|
33 |
+
elif ord == "":
|
34 |
ord = list()
|
35 |
else:
|
36 |
+
pass
|
37 |
+
if len(ord)!=0:
|
38 |
+
le = LabelEncoder()
|
39 |
+
new_df[ord] = new_df[ord].apply(lambda col: le.fit_transform(col))
|
40 |
nom = list(set(cat).difference(set(ord)))
|
|
|
|
|
|
|
41 |
if len(nom) == 0:
|
42 |
pass
|
43 |
else:
|
|
|
51 |
text = "regression"
|
52 |
result = regression(new_df,dep)
|
53 |
return df.sample(5),new_df.sample(5),result, text, cat, ord, nom
|
54 |
+
|
55 |
def classification(df,dep):
|
56 |
X = df.drop(dep,axis=1)
|
57 |
y = df[dep]
|
|
|
116 |
},
|
117 |
]
|
118 |
|
119 |
+
search = GridSearchCV(pipe, param_grid=parameters, cv=5, n_jobs=-1, scoring='neg_mean_absolute_percentage_error')
|
120 |
search.fit(X_train,y_train)
|
121 |
|
122 |
result = pd.DataFrame(search.cv_results_)[['params','rank_test_score','mean_test_score']]
|
123 |
|
124 |
+
result['mean_test_score']= (result['mean_test_score']+1)*100
|
125 |
result = result.astype({'params': str})
|
126 |
|
127 |
result.sort_values('rank_test_score',inplace=True)
|