Update app.py
Browse files
app.py
CHANGED
@@ -1,115 +1,145 @@
|
|
1 |
-
import cv2
|
2 |
-
import gradio as gr
|
3 |
import os
|
4 |
-
|
5 |
import numpy as np
|
6 |
import torch
|
|
|
|
|
7 |
from torch.autograd import Variable
|
8 |
from torchvision import transforms
|
9 |
-
|
10 |
-
import
|
11 |
-
|
12 |
-
|
13 |
warnings.filterwarnings("ignore")
|
14 |
|
15 |
-
|
16 |
-
os.
|
|
|
17 |
|
18 |
-
#
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
from models import *
|
21 |
|
22 |
-
#
|
23 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
24 |
|
25 |
-
#
|
26 |
if not os.path.exists("saved_models"):
|
27 |
os.mkdir("saved_models")
|
|
|
28 |
os.system("mv isnet.pth saved_models/")
|
29 |
-
|
|
|
30 |
class GOSNormalize(object):
|
31 |
-
'''
|
32 |
-
Normalize the Image using torch.transforms
|
33 |
-
'''
|
34 |
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
|
35 |
self.mean = mean
|
36 |
self.std = std
|
37 |
|
38 |
-
def __call__(self,image):
|
39 |
-
|
40 |
-
return image
|
41 |
-
|
42 |
|
43 |
-
transform =
|
|
|
|
|
44 |
|
45 |
def load_image(im_path, hypar):
|
46 |
im = im_reader(im_path)
|
47 |
im, im_shp = im_preprocess(im, hypar["cache_size"])
|
48 |
-
im = torch.divide(im,255.0)
|
49 |
shape = torch.from_numpy(np.array(im_shp))
|
50 |
return transform(im).unsqueeze(0), shape.unsqueeze(0)
|
51 |
|
52 |
-
|
53 |
-
def build_model(hypar,device):
|
54 |
net = hypar["model"]
|
55 |
-
if
|
56 |
net.half()
|
57 |
for layer in net.modules():
|
58 |
if isinstance(layer, nn.BatchNorm2d):
|
59 |
layer.float()
|
60 |
net.to(device)
|
61 |
-
if
|
62 |
-
net.load_state_dict(torch.load(
|
63 |
-
|
64 |
-
|
|
|
|
|
65 |
return net
|
66 |
|
67 |
-
def predict(net,
|
68 |
net.eval()
|
69 |
-
if
|
70 |
inputs_val = inputs_val.type(torch.FloatTensor)
|
71 |
else:
|
72 |
inputs_val = inputs_val.type(torch.HalfTensor)
|
73 |
|
74 |
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
|
75 |
-
ds_val = net(inputs_val_v)[0]
|
76 |
-
pred_val = ds_val[0][0
|
77 |
-
pred_val = torch.squeeze(F.
|
|
|
|
|
|
|
|
|
78 |
ma = torch.max(pred_val)
|
79 |
mi = torch.min(pred_val)
|
80 |
-
pred_val = (pred_val-mi)/(ma-mi)
|
81 |
-
if device == 'cuda':
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
hypar
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
96 |
|
|
|
97 |
|
|
|
98 |
def inference(image):
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
107 |
|
|
|
|
|
|
|
|
|
|
|
108 |
|
|
|
109 |
interface = gr.Interface(
|
110 |
fn=inference,
|
111 |
inputs=gr.Image(type='filepath', height=300, width=300),
|
112 |
-
outputs=[
|
|
|
|
|
|
|
113 |
flagging_mode="never",
|
114 |
-
cache_mode="lazy"
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import warnings
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
from torch.autograd import Variable
|
8 |
from torchvision import transforms
|
9 |
+
from PIL import Image
|
10 |
+
import gradio as gr
|
11 |
+
|
12 |
+
# Suppress warnings
|
13 |
warnings.filterwarnings("ignore")
|
14 |
|
15 |
+
# Clone DIS repo if not exists
|
16 |
+
if not os.path.exists("DIS"):
|
17 |
+
os.system("git clone https://github.com/xuebinqin/DIS")
|
18 |
|
19 |
+
# Move model files
|
20 |
+
if not os.path.exists("models.py"):
|
21 |
+
os.system("mv DIS/IS-Net/* .")
|
22 |
+
|
23 |
+
# Project imports
|
24 |
+
from data_loader_cache import normalize, im_reader, im_preprocess
|
25 |
from models import *
|
26 |
|
27 |
+
# Setup device
|
28 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
29 |
|
30 |
+
# Prepare saved models folder
|
31 |
if not os.path.exists("saved_models"):
|
32 |
os.mkdir("saved_models")
|
33 |
+
# NOTE: make sure isnet.pth is available, otherwise manual download needed
|
34 |
os.system("mv isnet.pth saved_models/")
|
35 |
+
|
36 |
+
# --- Helpers ---
|
37 |
class GOSNormalize(object):
|
|
|
|
|
|
|
38 |
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
|
39 |
self.mean = mean
|
40 |
self.std = std
|
41 |
|
42 |
+
def __call__(self, image):
|
43 |
+
return normalize(image, self.mean, self.std)
|
|
|
|
|
44 |
|
45 |
+
transform = transforms.Compose([
|
46 |
+
GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])
|
47 |
+
])
|
48 |
|
49 |
def load_image(im_path, hypar):
|
50 |
im = im_reader(im_path)
|
51 |
im, im_shp = im_preprocess(im, hypar["cache_size"])
|
52 |
+
im = torch.divide(im, 255.0)
|
53 |
shape = torch.from_numpy(np.array(im_shp))
|
54 |
return transform(im).unsqueeze(0), shape.unsqueeze(0)
|
55 |
|
56 |
+
def build_model(hypar, device):
|
|
|
57 |
net = hypar["model"]
|
58 |
+
if hypar["model_digit"] == "half":
|
59 |
net.half()
|
60 |
for layer in net.modules():
|
61 |
if isinstance(layer, nn.BatchNorm2d):
|
62 |
layer.float()
|
63 |
net.to(device)
|
64 |
+
if hypar["restore_model"] != "":
|
65 |
+
net.load_state_dict(torch.load(
|
66 |
+
os.path.join(hypar["model_path"], hypar["restore_model"]),
|
67 |
+
map_location=device
|
68 |
+
))
|
69 |
+
net.eval()
|
70 |
return net
|
71 |
|
72 |
+
def predict(net, inputs_val, shapes_val, hypar, device):
|
73 |
net.eval()
|
74 |
+
if hypar["model_digit"] == "full":
|
75 |
inputs_val = inputs_val.type(torch.FloatTensor)
|
76 |
else:
|
77 |
inputs_val = inputs_val.type(torch.HalfTensor)
|
78 |
|
79 |
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
|
80 |
+
ds_val = net(inputs_val_v)[0]
|
81 |
+
pred_val = ds_val[0][0, :, :, :]
|
82 |
+
pred_val = torch.squeeze(F.interpolate(
|
83 |
+
torch.unsqueeze(pred_val, 0),
|
84 |
+
(shapes_val[0][0], shapes_val[0][1]),
|
85 |
+
mode='bilinear'
|
86 |
+
))
|
87 |
ma = torch.max(pred_val)
|
88 |
mi = torch.min(pred_val)
|
89 |
+
pred_val = (pred_val - mi) / (ma - mi)
|
90 |
+
if device == 'cuda':
|
91 |
+
torch.cuda.empty_cache()
|
92 |
+
return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8)
|
93 |
+
|
94 |
+
# --- Prepare model ---
|
95 |
+
hypar = {
|
96 |
+
"model_path": "./saved_models",
|
97 |
+
"restore_model": "isnet.pth",
|
98 |
+
"interm_sup": False,
|
99 |
+
"model_digit": "full",
|
100 |
+
"seed": 0,
|
101 |
+
"cache_size": [1024, 1024],
|
102 |
+
"input_size": [1024, 1024],
|
103 |
+
"crop_size": [1024, 1024],
|
104 |
+
"model": ISNetDIS()
|
105 |
+
}
|
106 |
|
107 |
+
net = build_model(hypar, device)
|
108 |
|
109 |
+
# --- Inference ---
|
110 |
def inference(image):
|
111 |
+
image_path = image
|
112 |
+
image_tensor, orig_size = load_image(image_path, hypar)
|
113 |
+
mask = predict(net, image_tensor, orig_size, hypar, device)
|
114 |
+
pil_mask = Image.fromarray(mask).convert('L')
|
115 |
+
|
116 |
+
im_rgb = Image.open(image_path).convert("RGB")
|
117 |
+
im_rgba = im_rgb.copy()
|
118 |
+
im_rgba.putalpha(pil_mask)
|
119 |
+
|
120 |
+
return [im_rgba, pil_mask]
|
121 |
|
122 |
+
# --- Custom CSS to hide footer ---
|
123 |
+
css_hide_footer = """
|
124 |
+
footer {display: none !important;}
|
125 |
+
#share-btn-container {display: none !important;}
|
126 |
+
"""
|
127 |
|
128 |
+
# --- Gradio Interface ---
|
129 |
interface = gr.Interface(
|
130 |
fn=inference,
|
131 |
inputs=gr.Image(type='filepath', height=300, width=300),
|
132 |
+
outputs=[
|
133 |
+
gr.Image(type='filepath', format="png"),
|
134 |
+
gr.Image(type='filepath', format="png", visible=False)
|
135 |
+
],
|
136 |
flagging_mode="never",
|
137 |
+
cache_mode="lazy"
|
138 |
+
)
|
139 |
+
|
140 |
+
interface.launch(
|
141 |
+
show_error=False,
|
142 |
+
show_api=False,
|
143 |
+
share=False,
|
144 |
+
css=css_hide_footer
|
145 |
+
)
|