import os import warnings import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from torchvision import transforms from PIL import Image import gradio as gr # Suppress warnings warnings.filterwarnings("ignore") # Clone DIS repo if not exists if not os.path.exists("DIS"): os.system("git clone https://github.com/xuebinqin/DIS") # Move model files if not os.path.exists("models.py"): os.system("mv DIS/IS-Net/* .") # Project imports from data_loader_cache import normalize, im_reader, im_preprocess from models import * # Setup device device = 'cuda' if torch.cuda.is_available() else 'cpu' # Prepare saved models folder if not os.path.exists("saved_models"): os.mkdir("saved_models") # NOTE: make sure isnet.pth is available locally os.system("mv isnet.pth saved_models/") # --- Helpers --- class GOSNormalize(object): def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]): self.mean = mean self.std = std def __call__(self, image): return normalize(image, self.mean, self.std) transform = transforms.Compose([ GOSNormalize([0.5, 0.5, 0.5], [1.0, 1.0, 1.0]) ]) def load_image(im_path, hypar): im = im_reader(im_path) im, im_shp = im_preprocess(im, hypar["cache_size"]) im = torch.divide(im, 255.0) shape = torch.from_numpy(np.array(im_shp)) return transform(im).unsqueeze(0), shape.unsqueeze(0) def build_model(hypar, device): net = hypar["model"] if hypar["model_digit"] == "half": net.half() for layer in net.modules(): if isinstance(layer, nn.BatchNorm2d): layer.float() net.to(device) if hypar["restore_model"] != "": net.load_state_dict(torch.load( os.path.join(hypar["model_path"], hypar["restore_model"]), map_location=device )) net.eval() return net def predict(net, inputs_val, shapes_val, hypar, device): net.eval() if hypar["model_digit"] == "full": inputs_val = inputs_val.type(torch.FloatTensor) else: inputs_val = inputs_val.type(torch.HalfTensor) inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) ds_val = net(inputs_val_v)[0] pred_val = ds_val[0][0, :, :, :] pred_val = torch.squeeze(F.interpolate( torch.unsqueeze(pred_val, 0), (shapes_val[0][0], shapes_val[0][1]), mode='bilinear' )) ma = torch.max(pred_val) mi = torch.min(pred_val) pred_val = (pred_val - mi) / (ma - mi) if device == 'cuda': torch.cuda.empty_cache() return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8) # --- Prepare model --- hypar = { "model_path": "./saved_models", "restore_model": "isnet.pth", "interm_sup": False, "model_digit": "full", "seed": 0, "cache_size": [1024, 1024], "input_size": [1024, 1024], "crop_size": [1024, 1024], "model": ISNetDIS() } net = build_model(hypar, device) # --- Inference --- def inference(image): image_path = image image_tensor, orig_size = load_image(image_path, hypar) mask = predict(net, image_tensor, orig_size, hypar, device) pil_mask = Image.fromarray(mask).convert('L') im_rgb = Image.open(image_path).convert("RGB") im_rgba = im_rgb.copy() im_rgba.putalpha(pil_mask) return [im_rgba, pil_mask] # --- Custom CSS to hide footer --- css_hide_footer = """ footer {display: none !important;} #component-12 {display: none !important;} #huggingface-space-header {display: none !important;} button[data-testid="ShareButton"] {display: none !important;} """ # --- Gradio Interface --- interface = gr.Interface( fn=inference, inputs=gr.Image(type='filepath', height=300, width=300), outputs=[ gr.Image(type='filepath', format="png"), gr.Image(type='filepath', format="png", visible=False) ], flagging_mode="never", cache_mode="lazy", css=css_hide_footer # ✅ CSS here inside Interface, not launch ) interface.launch( show_error=False, show_api=False, share=False )