import torch import torchaudio from sgmse.model import ScoreModel import gradio as gr from sgmse.util.other import pad_spec # Define parameters based on the argparse configuration in enhancement.py args = { "test_dir": "./test_data", # example directory, adjust as needed "enhanced_dir": "./enhanced_data", # example directory, adjust as needed "ckpt": "https://huggingface.co/sp-uhh/speech-enhancement-sgmse/resolve/main/train_vb_29nqe0uh_epoch%3D115.ckpt", "corrector": "ald", "corrector_steps": 1, "snr": 0.5, "N": 30, "device": "cuda" if torch.cuda.is_available() else "cpu" } # Load the pre-trained model model = ScoreModel.load_from_checkpoint(args["ckpt"]) def enhance_speech(audio_file): # Load and process the audio file y, sr = torchaudio.load(audio_file) T_orig = y.size(1) # Normalize norm_factor = y.abs().max() y = y / norm_factor # Prepare DNN input Y = torch.unsqueeze(model._forward_transform(model._stft(y.to(args["device"]))), 0) Y = pad_spec(Y, mode="zero_pad") # Use "zero_pad" mode for padding # Reverse sampling sampler = model.get_pc_sampler( 'reverse_diffusion', args["corrector"], Y.to(args["device"]), N=args["N"], corrector_steps=args["corrector_steps"], snr=args["snr"] ) sample, _ = sampler() # Backward transform in time domain x_hat = model.to_audio(sample.squeeze(), T_orig) # Renormalize x_hat = x_hat * norm_factor # Save the enhanced audio output_file = 'enhanced_output.wav' torchaudio.save(output_file, x_hat.cpu(), sr) return output_file # Gradio interface setup inputs = gr.Audio(label="Input Audio", type="filepath") outputs = gr.Audio(label="Output Audio", type="filepath") title = "Speech Enhancement using SGMSE" description = "This Gradio demo uses the SGMSE model for speech enhancement. Upload your audio file to enhance it." article = "
" # Launch without share=True (as it's not supported on Hugging Face Spaces) gr.Interface(fn=enhance_speech, inputs=inputs, outputs=outputs, title=title, description=description, article=article).launch()