summarizer / app.py
spacesedan's picture
ai on ai crime
a93595a
raw
history blame
3.06 kB
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import pipeline, AutoTokenizer
from typing import List
import logging
import torch
app = FastAPI()
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("summarizer")
# Faster and lighter summarization model
model_name = "sshleifer/distilbart-cnn-12-6"
summarizer = pipeline("summarization", model=model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
class SummarizationItem(BaseModel):
content_id: str
text: str
class BatchSummarizationRequest(BaseModel):
inputs: List[SummarizationItem]
class SummarizationResponseItem(BaseModel):
content_id: str
summary: str
class BatchSummarizationResponse(BaseModel):
summaries: List[SummarizationResponseItem]
# Ensure no chunk ever exceeds model token limit
MAX_MODEL_TOKENS = 1024
SAFE_CHUNK_SIZE = 700
def chunk_text(text: str, max_tokens: int = SAFE_CHUNK_SIZE) -> List[str]:
tokens = tokenizer.encode(text, truncation=False)
chunks = []
for i in range(0, len(tokens), max_tokens):
chunk_tokens = tokens[i:i + max_tokens]
chunk = tokenizer.decode(chunk_tokens, skip_special_tokens=True)
chunks.append(chunk)
return chunks
@app.post("/summarize", response_model=BatchSummarizationResponse)
async def summarize_batch(request: BatchSummarizationRequest):
all_chunks = []
chunk_map = [] # maps index of chunk to content_id
for item in request.inputs:
chunks = chunk_text(item.text)
logger.info(f"[CHUNKING] content_id={item.content_id} original_len={len(item.text)} num_chunks={len(chunks)}")
all_chunks.extend(chunks)
chunk_map.extend([item.content_id] * len(chunks))
# Enforce token limit using tensor shape
safe_chunks = []
for chunk in all_chunks:
inputs = tokenizer(chunk, return_tensors="pt", truncation=False)
token_length = inputs["input_ids"].shape[1]
if token_length > MAX_MODEL_TOKENS:
logger.warning(f"[TRUNCATING] Chunk token length {token_length} > {MAX_MODEL_TOKENS}, truncating.")
inputs = tokenizer(chunk, return_tensors="pt", truncation=True, max_length=MAX_MODEL_TOKENS)
chunk = tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)
safe_chunks.append(chunk)
summaries = summarizer(
safe_chunks,
max_length=150,
min_length=30,
truncation=True,
do_sample=False,
batch_size=4
)
# Aggregate summaries back per content_id
summary_map = {}
for content_id, result in zip(chunk_map, summaries):
summary_map.setdefault(content_id, []).append(result["summary_text"])
response_items = [
SummarizationResponseItem(
content_id=cid,
summary=" ".join(parts)
)
for cid, parts in summary_map.items()
]
return {"summaries": response_items}
@app.get("/")
def greet_json():
return {"message": "DistilBART Batch Summarizer API is running"}