summarizer / app.py
spacesedan's picture
comit
9e815e0
raw
history blame
3.56 kB
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import pipeline, AutoTokenizer
from typing import List
import logging
import torch
import nltk
from nltk.tokenize import sent_tokenize
# FastAPI app init
app = FastAPI()
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("summarizer")
# NLTK setup
nltk.download("punkt")
# Model config
model_name = "sshleifer/distilbart-cnn-12-6"
device = 0 if torch.cuda.is_available() else -1
logger.info(f"Running summarizer on {'GPU' if device == 0 else 'CPU'}")
summarizer = pipeline("summarization", model=model_name, device=device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Token limits
MAX_MODEL_TOKENS = 1024
SAFE_CHUNK_SIZE = 700 # Conservative chunk size to stay below 1024 after re-tokenization
# Input/output schemas
class SummarizationItem(BaseModel):
content_id: str
text: str
class BatchSummarizationRequest(BaseModel):
inputs: List[SummarizationItem]
class SummarizationResponseItem(BaseModel):
content_id: str
summary: str
class BatchSummarizationResponse(BaseModel):
summaries: List[SummarizationResponseItem]
# New safe chunking logic using NLTK
def chunk_text(text: str, max_tokens: int = SAFE_CHUNK_SIZE) -> List[str]:
sentences = sent_tokenize(text)
chunks = []
current_chunk = ""
for sentence in sentences:
temp_chunk = f"{current_chunk} {sentence}".strip()
token_count = len(tokenizer.encode(temp_chunk, truncation=False))
if token_count <= max_tokens:
current_chunk = temp_chunk
else:
if current_chunk:
chunks.append(current_chunk)
current_chunk = sentence
if current_chunk:
chunks.append(current_chunk)
final_chunks = []
for chunk in chunks:
encoded = tokenizer(chunk, return_tensors="pt", truncation=False)
actual_len = encoded["input_ids"].shape[1]
if actual_len <= MAX_MODEL_TOKENS:
final_chunks.append(chunk)
else:
logger.warning(f"[CHUNKING] Dropped chunk due to re-encoding overflow: {actual_len} tokens")
return final_chunks
# Main summarization endpoint
@app.post("/summarize", response_model=BatchSummarizationResponse)
async def summarize_batch(request: BatchSummarizationRequest):
all_chunks = []
chunk_map = []
for item in request.inputs:
token_count = len(tokenizer.encode(item.text, truncation=False))
chunks = chunk_text(item.text)
logger.info(f"[CHUNKING] content_id={item.content_id} token_len={token_count} num_chunks={len(chunks)}")
for chunk in chunks:
all_chunks.append(chunk)
chunk_map.append(item.content_id)
if not all_chunks:
logger.error("No valid chunks after filtering. Returning empty response.")
return {"summaries": []}
summaries = summarizer(
all_chunks,
max_length=150,
min_length=30,
truncation=True,
do_sample=False,
batch_size=4
)
summary_map = {}
for content_id, result in zip(chunk_map, summaries):
summary_map.setdefault(content_id, []).append(result["summary_text"])
response_items = [
SummarizationResponseItem(
content_id=cid,
summary=" ".join(parts)
)
for cid, parts in summary_map.items()
]
return {"summaries": response_items}
@app.get("/")
def greet_json():
return {"message": "DistilBART Batch Summarizer API is running"}