Spaces:
Runtime error
Runtime error
daniel Foley
commited on
Commit
Β·
08c6b0b
1
Parent(s):
9b667a3
test hf concurrence
Browse files- streamlit-rag-app.py +127 -38
streamlit-rag-app.py
CHANGED
|
@@ -1,96 +1,185 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
| 2 |
import os
|
|
|
|
| 3 |
import json
|
|
|
|
| 4 |
from dotenv import load_dotenv
|
| 5 |
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
| 7 |
from langchain_community.vectorstores import FAISS
|
|
|
|
| 8 |
from langchain.text_splitter import CharacterTextSplitter
|
| 9 |
-
|
|
|
|
|
|
|
| 10 |
from langchain.schema import Document
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# Load environment variables
|
|
|
|
| 14 |
load_dotenv()
|
| 15 |
|
|
|
|
|
|
|
| 16 |
# Get the OpenAI API key from the environment
|
|
|
|
| 17 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
|
|
|
| 18 |
if not OPENAI_API_KEY:
|
|
|
|
| 19 |
st.error("OPENAI_API_KEY is not set. Please add it to your .env file.")
|
| 20 |
|
|
|
|
|
|
|
| 21 |
# Initialize session state variables
|
|
|
|
| 22 |
if 'vector_store' not in st.session_state:
|
|
|
|
| 23 |
st.session_state.vector_store = None
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
with open(file_path, "r", encoding="utf-8") as file:
|
| 30 |
-
data = json.load(file)
|
| 31 |
-
return data
|
| 32 |
-
|
| 33 |
-
def setup_vector_store_from_json(json_data):
|
| 34 |
-
"""Create a vector store from JSON data."""
|
| 35 |
-
documents = [Document(page_content=item["content"], metadata={"url": item["url"]}) for item in json_data]
|
| 36 |
|
| 37 |
-
|
| 38 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
| 39 |
|
| 40 |
-
vector_store = FAISS.from_documents(documents, embeddings)
|
| 41 |
-
return vector_store
|
| 42 |
|
| 43 |
-
def setup_qa_chain(vector_store):
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
def main():
|
|
|
|
| 51 |
# Set page title and header
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
st.title("Boston Public Library Database π")
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
# Sidebar for initialization
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
# Query input and processing
|
|
|
|
| 68 |
st.header("Ask a Question")
|
|
|
|
| 69 |
query = st.text_input("Enter your question about BPL's database")
|
| 70 |
|
|
|
|
|
|
|
| 71 |
if query:
|
|
|
|
| 72 |
# Check if vector store and QA chain are initialized
|
| 73 |
-
|
|
|
|
|
|
|
| 74 |
st.warning("Please load the knowledge base first using the sidebar.")
|
|
|
|
| 75 |
else:
|
|
|
|
| 76 |
# Run the query
|
|
|
|
| 77 |
try:
|
| 78 |
-
|
|
|
|
|
|
|
| 79 |
|
|
|
|
| 80 |
# Display answer
|
|
|
|
| 81 |
st.subheader("Answer")
|
|
|
|
| 82 |
st.write(response["result"])
|
| 83 |
|
|
|
|
|
|
|
| 84 |
# Display sources
|
|
|
|
| 85 |
st.subheader("Sources")
|
|
|
|
| 86 |
sources = response["source_documents"]
|
|
|
|
| 87 |
for i, doc in enumerate(sources, 1):
|
|
|
|
| 88 |
with st.expander(f"Source {i}"):
|
|
|
|
| 89 |
st.write(f"**Content:** {doc.page_content}")
|
|
|
|
| 90 |
st.write(f"**URL:** {doc.metadata.get('url', 'No URL available')}")
|
| 91 |
|
|
|
|
|
|
|
| 92 |
except Exception as e:
|
|
|
|
| 93 |
st.error(f"An error occurred: {e}")
|
| 94 |
|
|
|
|
|
|
|
| 95 |
if __name__ == "__main__":
|
|
|
|
| 96 |
main()
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
|
| 3 |
import os
|
| 4 |
+
|
| 5 |
import json
|
| 6 |
+
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# from langchain.chains import RetrievalQA
|
| 12 |
+
|
| 13 |
from langchain_community.vectorstores import FAISS
|
| 14 |
+
|
| 15 |
from langchain.text_splitter import CharacterTextSplitter
|
| 16 |
+
|
| 17 |
+
from langchain_openai import ChatOpenAI, OpenAIEmbeddings, OpenAI
|
| 18 |
+
|
| 19 |
from langchain.schema import Document
|
| 20 |
+
|
| 21 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 22 |
+
|
| 23 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 24 |
+
|
| 25 |
+
from langchain.chains.retrieval import create_retrieval_chain
|
| 26 |
+
|
| 27 |
+
from langchain_core.prompts import PromptTemplate
|
| 28 |
+
|
| 29 |
+
|
| 30 |
|
| 31 |
# Load environment variables
|
| 32 |
+
|
| 33 |
load_dotenv()
|
| 34 |
|
| 35 |
+
|
| 36 |
+
|
| 37 |
# Get the OpenAI API key from the environment
|
| 38 |
+
|
| 39 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
| 40 |
+
|
| 41 |
if not OPENAI_API_KEY:
|
| 42 |
+
|
| 43 |
st.error("OPENAI_API_KEY is not set. Please add it to your .env file.")
|
| 44 |
|
| 45 |
+
|
| 46 |
+
|
| 47 |
# Initialize session state variables
|
| 48 |
+
|
| 49 |
if 'vector_store' not in st.session_state:
|
| 50 |
+
|
| 51 |
st.session_state.vector_store = None
|
| 52 |
+
|
| 53 |
+
# if 'qa_chain' not in st.session_state:
|
| 54 |
+
|
| 55 |
+
# st.session_state.qa_chain = None
|
| 56 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
|
|
|
|
| 59 |
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
# def setup_qa_chain(vector_store):
|
| 62 |
+
|
| 63 |
+
# """Set up the QA chain with a retriever."""
|
| 64 |
+
|
| 65 |
+
# retriever = vector_store.as_retriever(search_kwargs={"k": 3})
|
| 66 |
+
|
| 67 |
+
# llm = ChatOpenAI(model="gpt-3.5-turbo", openai_api_key=OPENAI_API_KEY)
|
| 68 |
+
|
| 69 |
+
# qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever, return_source_documents=True)
|
| 70 |
+
|
| 71 |
+
# return qa_chain
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
prompt_template = PromptTemplate.from_template("Answer the following query based on a number of context documents Query:{query},Context:{context},Answer:")
|
| 76 |
+
|
| 77 |
+
|
| 78 |
|
| 79 |
def main():
|
| 80 |
+
|
| 81 |
# Set page title and header
|
| 82 |
+
|
| 83 |
+
llm = ChatOpenAI(model="gpt-3.5-turbo", openai_api_key=OPENAI_API_KEY)
|
| 84 |
+
|
| 85 |
+
st.set_page_config(page_title="LibRAG", page_icon="π")
|
| 86 |
+
|
| 87 |
st.title("Boston Public Library Database π")
|
| 88 |
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
|
| 95 |
# Sidebar for initialization
|
| 96 |
+
|
| 97 |
+
# st.sidebar.header("Initialize Knowledge Base")
|
| 98 |
+
|
| 99 |
+
# if st.sidebar.button("Load Data"):
|
| 100 |
+
|
| 101 |
+
# try:
|
| 102 |
+
|
| 103 |
+
# st.session_state.vector_store = FAISS.load_local(
|
| 104 |
+
|
| 105 |
+
# "vector-store", embeddings, allow_dangerous_deserialization=True
|
| 106 |
+
|
| 107 |
+
# )
|
| 108 |
+
|
| 109 |
+
# st.session_state.qa_chain = setup_qa_chain(st.session_state.vector_store)
|
| 110 |
+
|
| 111 |
+
# st.sidebar.success("Knowledge base loaded successfully!")
|
| 112 |
+
|
| 113 |
+
# except Exception as e:
|
| 114 |
+
|
| 115 |
+
# st.sidebar.error(f"Error loading data: {e}")
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
st.session_state.vector_store = FAISS.load_local("vector-store", embeddings, allow_dangerous_deserialization=True)
|
| 120 |
+
|
| 121 |
+
st.session_state.combine_docs_chain = create_stuff_documents_chain(llm, prompt_template)
|
| 122 |
+
|
| 123 |
+
st.session_stateretrieval_chain = create_retrieval_chain(st.session_state.vector_store.as_retriever(search_kwargs={"k": 3}), combine_docs_chain)
|
| 124 |
+
|
| 125 |
+
# st.session_state.qa_chain = setup_qa_chain(st.session_state.vector_store)
|
| 126 |
|
| 127 |
# Query input and processing
|
| 128 |
+
|
| 129 |
st.header("Ask a Question")
|
| 130 |
+
|
| 131 |
query = st.text_input("Enter your question about BPL's database")
|
| 132 |
|
| 133 |
+
response = llm.invoke()
|
| 134 |
+
|
| 135 |
if query:
|
| 136 |
+
|
| 137 |
# Check if vector store and QA chain are initialized
|
| 138 |
+
|
| 139 |
+
if st.session_state.response is None:
|
| 140 |
+
|
| 141 |
st.warning("Please load the knowledge base first using the sidebar.")
|
| 142 |
+
|
| 143 |
else:
|
| 144 |
+
|
| 145 |
# Run the query
|
| 146 |
+
|
| 147 |
try:
|
| 148 |
+
|
| 149 |
+
st.session_state.response = retrieval_chain.invoke({"input": f"{query}"})
|
| 150 |
+
|
| 151 |
|
| 152 |
+
|
| 153 |
# Display answer
|
| 154 |
+
|
| 155 |
st.subheader("Answer")
|
| 156 |
+
|
| 157 |
st.write(response["result"])
|
| 158 |
|
| 159 |
+
|
| 160 |
+
|
| 161 |
# Display sources
|
| 162 |
+
|
| 163 |
st.subheader("Sources")
|
| 164 |
+
|
| 165 |
sources = response["source_documents"]
|
| 166 |
+
|
| 167 |
for i, doc in enumerate(sources, 1):
|
| 168 |
+
|
| 169 |
with st.expander(f"Source {i}"):
|
| 170 |
+
|
| 171 |
st.write(f"**Content:** {doc.page_content}")
|
| 172 |
+
|
| 173 |
st.write(f"**URL:** {doc.metadata.get('url', 'No URL available')}")
|
| 174 |
|
| 175 |
+
|
| 176 |
+
|
| 177 |
except Exception as e:
|
| 178 |
+
|
| 179 |
st.error(f"An error occurred: {e}")
|
| 180 |
|
| 181 |
+
|
| 182 |
+
|
| 183 |
if __name__ == "__main__":
|
| 184 |
+
|
| 185 |
main()
|