Spaces:
Runtime error
Runtime error
back to n workers set to 1. rate limiting
Browse files
RAG.py
CHANGED
|
@@ -14,8 +14,6 @@ import requests
|
|
| 14 |
from typing import Dict, Any, Optional, List, Tuple
|
| 15 |
import logging
|
| 16 |
import concurrent.futures
|
| 17 |
-
import json
|
| 18 |
-
from threading import Lock
|
| 19 |
|
| 20 |
def retrieve(query: str,vectorstore:PineconeVectorStore, k: int = 100) -> Tuple[List[Document], List[float]]:
|
| 21 |
start = time.time()
|
|
@@ -86,20 +84,8 @@ def process_single_document(doc: Document) -> Optional[Document]:
|
|
| 86 |
)
|
| 87 |
return None
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
_worker_lock = Lock()
|
| 92 |
-
|
| 93 |
-
def get_current_worker_count() -> int:
|
| 94 |
-
"""Thread-safe way to get and toggle the worker count between 1 and 2."""
|
| 95 |
-
global _use_two_workers
|
| 96 |
-
with _worker_lock:
|
| 97 |
-
current_workers = 2 if _use_two_workers else 1
|
| 98 |
-
_use_two_workers = not _use_two_workers # Toggle for next time
|
| 99 |
-
return current_workers
|
| 100 |
-
|
| 101 |
-
def rerank(documents: List[Document], query: str) -> List[Document]:
|
| 102 |
-
"""Ingest more metadata and rerank documents using BM25 with alternating worker counts."""
|
| 103 |
start = time.time()
|
| 104 |
if not documents:
|
| 105 |
return []
|
|
@@ -107,12 +93,8 @@ def rerank(documents: List[Document], query: str) -> List[Document]:
|
|
| 107 |
meta_start = time.time()
|
| 108 |
full_docs = []
|
| 109 |
|
| 110 |
-
# Get the worker count for this specific call
|
| 111 |
-
worker_count = get_current_worker_count()
|
| 112 |
-
logging.info(f"Processing with {worker_count} worker{'s' if worker_count > 1 else ''}")
|
| 113 |
-
|
| 114 |
# Process documents in parallel using ThreadPoolExecutor
|
| 115 |
-
with concurrent.futures.ThreadPoolExecutor(max_workers=
|
| 116 |
# Submit all document processing tasks
|
| 117 |
future_to_doc = {
|
| 118 |
executor.submit(process_single_document, doc): doc
|
|
@@ -122,7 +104,7 @@ def rerank(documents: List[Document], query: str) -> List[Document]:
|
|
| 122 |
# Collect results as they complete
|
| 123 |
for future in concurrent.futures.as_completed(future_to_doc):
|
| 124 |
processed_doc = future.result()
|
| 125 |
-
if processed_doc:
|
| 126 |
full_docs.append(processed_doc)
|
| 127 |
|
| 128 |
logging.info(f"Took {time.time()-meta_start} seconds to retrieve all metadata")
|
|
@@ -135,8 +117,7 @@ def rerank(documents: List[Document], query: str) -> List[Document]:
|
|
| 135 |
reranker = BM25Retriever.from_documents(full_docs, k=min(10, len(full_docs)))
|
| 136 |
reranked_docs = reranker.invoke(query)
|
| 137 |
logging.info(f"Finished reranking: {time.time()-start}")
|
| 138 |
-
return
|
| 139 |
-
|
| 140 |
|
| 141 |
def parse_xml_and_query(query:str,xml_string:str) -> str:
|
| 142 |
"""parse xml and return rephrased query"""
|
|
@@ -222,7 +203,7 @@ def RAG(llm: Any, query: str,vectorstore:PineconeVectorStore, top: int = 10, k:
|
|
| 222 |
First, reason about the answer between <REASONING></REASONING> headers,
|
| 223 |
based on the context determine if there is sufficient material for answering the exact question,
|
| 224 |
return either <VALID>YES</VALID> or <VALID>NO</VALID>
|
| 225 |
-
then return a response between <RESPONSE></RESPONSE> headers:
|
| 226 |
Here is an example
|
| 227 |
<EXAMPLE>
|
| 228 |
<QUERY>Are pineapples a good fuel for cars?</QUERY>
|
|
|
|
| 14 |
from typing import Dict, Any, Optional, List, Tuple
|
| 15 |
import logging
|
| 16 |
import concurrent.futures
|
|
|
|
|
|
|
| 17 |
|
| 18 |
def retrieve(query: str,vectorstore:PineconeVectorStore, k: int = 100) -> Tuple[List[Document], List[float]]:
|
| 19 |
start = time.time()
|
|
|
|
| 84 |
)
|
| 85 |
return None
|
| 86 |
|
| 87 |
+
def rerank(documents: List[Document], query: str, max_workers: int = 1) -> List[Document]:
|
| 88 |
+
"""Ingest more metadata and rerank documents using BM25 with parallel processing."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
start = time.time()
|
| 90 |
if not documents:
|
| 91 |
return []
|
|
|
|
| 93 |
meta_start = time.time()
|
| 94 |
full_docs = []
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
# Process documents in parallel using ThreadPoolExecutor
|
| 97 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
|
| 98 |
# Submit all document processing tasks
|
| 99 |
future_to_doc = {
|
| 100 |
executor.submit(process_single_document, doc): doc
|
|
|
|
| 104 |
# Collect results as they complete
|
| 105 |
for future in concurrent.futures.as_completed(future_to_doc):
|
| 106 |
processed_doc = future.result()
|
| 107 |
+
if processed_doc:extract_text_from_json():
|
| 108 |
full_docs.append(processed_doc)
|
| 109 |
|
| 110 |
logging.info(f"Took {time.time()-meta_start} seconds to retrieve all metadata")
|
|
|
|
| 117 |
reranker = BM25Retriever.from_documents(full_docs, k=min(10, len(full_docs)))
|
| 118 |
reranked_docs = reranker.invoke(query)
|
| 119 |
logging.info(f"Finished reranking: {time.time()-start}")
|
| 120 |
+
return full_docs
|
|
|
|
| 121 |
|
| 122 |
def parse_xml_and_query(query:str,xml_string:str) -> str:
|
| 123 |
"""parse xml and return rephrased query"""
|
|
|
|
| 203 |
First, reason about the answer between <REASONING></REASONING> headers,
|
| 204 |
based on the context determine if there is sufficient material for answering the exact question,
|
| 205 |
return either <VALID>YES</VALID> or <VALID>NO</VALID>
|
| 206 |
+
then return a response between <RESPONSE></RESPONSE> headers, your response should be well formatted and an individual summary of each piece of relevant context:
|
| 207 |
Here is an example
|
| 208 |
<EXAMPLE>
|
| 209 |
<QUERY>Are pineapples a good fuel for cars?</QUERY>
|