Commit
·
5ae48b5
1
Parent(s):
6073113
update
Browse files- src/backend/run_eval_suite.py +22 -8
- src/backend/tasks/measurement_task_utils.py +21 -8
- src/display/utils.py +27 -9
- src/utils.py +826 -32
src/backend/run_eval_suite.py
CHANGED
|
@@ -17,16 +17,22 @@ def process_results_decorator(func):
|
|
| 17 |
end_to_end_time = sum([r[1] for r in results]) / len(results)
|
| 18 |
prefilling_time = sum([r[2] for r in results]) / len(results)
|
| 19 |
decoding_throughput = sum([r[3] for r in results]) / len(results)
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
| 22 |
# print(f"end_to_end_time: {end_to_end_time}, prefilling_time: {prefilling_time}, decoding_throughput: {decoding_throughput}")
|
| 23 |
|
| 24 |
result_dict = func(self, doc, processed_results, *args, **kwargs)
|
| 25 |
result_dict["end_to_end_time"] = end_to_end_time
|
| 26 |
result_dict["prefilling_time"] = prefilling_time
|
| 27 |
result_dict["decoding_throughput"] = decoding_throughput
|
| 28 |
-
result_dict["
|
| 29 |
-
result_dict["
|
|
|
|
|
|
|
|
|
|
| 30 |
return result_dict
|
| 31 |
return wrapper
|
| 32 |
ConfigurableTask.process_results = process_results_decorator(orig_process_results)
|
|
@@ -37,8 +43,11 @@ def aggregation_decorator(func):
|
|
| 37 |
aggregation_list["end_to_end_time"] = mean
|
| 38 |
aggregation_list["prefilling_time"] = mean
|
| 39 |
aggregation_list["decoding_throughput"] = mean
|
| 40 |
-
aggregation_list["
|
| 41 |
-
aggregation_list["
|
|
|
|
|
|
|
|
|
|
| 42 |
return aggregation_list
|
| 43 |
return wrapper
|
| 44 |
ConfigurableTask.aggregation = aggregation_decorator(orig_aggregation)
|
|
@@ -49,8 +58,11 @@ def higher_is_better_decorator(func):
|
|
| 49 |
higher_is_better_dict["end_to_end_time"] = False
|
| 50 |
higher_is_better_dict["prefilling_time"] = False
|
| 51 |
higher_is_better_dict["decoding_throughput"] = True
|
| 52 |
-
higher_is_better_dict["
|
| 53 |
-
higher_is_better_dict["
|
|
|
|
|
|
|
|
|
|
| 54 |
return higher_is_better_dict
|
| 55 |
return wrapper
|
| 56 |
ConfigurableTask.higher_is_better = higher_is_better_decorator(orig_higher_is_better)
|
|
@@ -65,6 +77,8 @@ from src.backend.tasks.selfcheckgpt.task import SelfCheckGPT
|
|
| 65 |
|
| 66 |
from src.backend.huggingface_generate_until import HFLMwithChatTemplate
|
| 67 |
from src.backend.moe_infinity import MoEHFLM
|
|
|
|
|
|
|
| 68 |
|
| 69 |
def run_evaluation(
|
| 70 |
eval_request: EvalRequest,
|
|
|
|
| 17 |
end_to_end_time = sum([r[1] for r in results]) / len(results)
|
| 18 |
prefilling_time = sum([r[2] for r in results]) / len(results)
|
| 19 |
decoding_throughput = sum([r[3] for r in results]) / len(results)
|
| 20 |
+
decoding_mfu = sum([r[4] for r in results]) / len(results)
|
| 21 |
+
decoding_mbu = sum([r[5] for r in results]) / len(results)
|
| 22 |
+
prefill_throughput = sum([r[6] for r in results]) / len(results)
|
| 23 |
+
prefill_mfu = sum([r[7] for r in results]) / len(results)
|
| 24 |
+
prefill_mbu = sum([r[8] for r in results]) / len(results)
|
| 25 |
# print(f"end_to_end_time: {end_to_end_time}, prefilling_time: {prefilling_time}, decoding_throughput: {decoding_throughput}")
|
| 26 |
|
| 27 |
result_dict = func(self, doc, processed_results, *args, **kwargs)
|
| 28 |
result_dict["end_to_end_time"] = end_to_end_time
|
| 29 |
result_dict["prefilling_time"] = prefilling_time
|
| 30 |
result_dict["decoding_throughput"] = decoding_throughput
|
| 31 |
+
result_dict["decoding_mfu"] = decoding_mfu
|
| 32 |
+
result_dict["decoding_mbu"] = decoding_mbu
|
| 33 |
+
result_dict["prefill_throughput"] = prefill_throughput
|
| 34 |
+
result_dict["prefill_mfu"] = prefill_mfu
|
| 35 |
+
result_dict["prefill_mbu"] = prefill_mbu
|
| 36 |
return result_dict
|
| 37 |
return wrapper
|
| 38 |
ConfigurableTask.process_results = process_results_decorator(orig_process_results)
|
|
|
|
| 43 |
aggregation_list["end_to_end_time"] = mean
|
| 44 |
aggregation_list["prefilling_time"] = mean
|
| 45 |
aggregation_list["decoding_throughput"] = mean
|
| 46 |
+
aggregation_list["decoding_mfu"] = mean
|
| 47 |
+
aggregation_list["decoding_mbu"] = mean
|
| 48 |
+
aggregation_list["prefill_throughput"] = mean
|
| 49 |
+
aggregation_list["prefill_mfu"] = mean
|
| 50 |
+
aggregation_list["prefill_mbu"] = mean
|
| 51 |
return aggregation_list
|
| 52 |
return wrapper
|
| 53 |
ConfigurableTask.aggregation = aggregation_decorator(orig_aggregation)
|
|
|
|
| 58 |
higher_is_better_dict["end_to_end_time"] = False
|
| 59 |
higher_is_better_dict["prefilling_time"] = False
|
| 60 |
higher_is_better_dict["decoding_throughput"] = True
|
| 61 |
+
higher_is_better_dict["decoding_mfu"] = True
|
| 62 |
+
higher_is_better_dict["decoding_mbu"] = True
|
| 63 |
+
higher_is_better_dict["prefill_throughput"] = True
|
| 64 |
+
higher_is_better_dict["prefill_mfu"] = True
|
| 65 |
+
higher_is_better_dict["prefill_mbu"] = True
|
| 66 |
return higher_is_better_dict
|
| 67 |
return wrapper
|
| 68 |
ConfigurableTask.higher_is_better = higher_is_better_decorator(orig_higher_is_better)
|
|
|
|
| 77 |
|
| 78 |
from src.backend.huggingface_generate_until import HFLMwithChatTemplate
|
| 79 |
from src.backend.moe_infinity import MoEHFLM
|
| 80 |
+
from src.backend.vllm import VLLM_MOE
|
| 81 |
+
from src.backend.sglang import SGLangMoE
|
| 82 |
|
| 83 |
def run_evaluation(
|
| 84 |
eval_request: EvalRequest,
|
src/backend/tasks/measurement_task_utils.py
CHANGED
|
@@ -12,8 +12,12 @@ def process_results_decorator(func):
|
|
| 12 |
end_to_end_time = sum([r[1] for r in results]) / len(results)
|
| 13 |
prefilling_time = sum([r[2] for r in results]) / len(results)
|
| 14 |
decoding_throughput = sum([r[3] for r in results]) / len(results)
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
# print(f"end_to_end_time: {end_to_end_time}, prefilling_time: {prefilling_time}, decoding_throughput: {decoding_throughput}")
|
| 19 |
|
|
@@ -22,8 +26,11 @@ def process_results_decorator(func):
|
|
| 22 |
result_dict["end_to_end_time"] = end_to_end_time
|
| 23 |
result_dict["prefilling_time"] = prefilling_time
|
| 24 |
result_dict["decoding_throughput"] = decoding_throughput
|
| 25 |
-
result_dict["
|
| 26 |
-
result_dict["
|
|
|
|
|
|
|
|
|
|
| 27 |
return result_dict
|
| 28 |
return wrapper
|
| 29 |
|
|
@@ -35,8 +42,11 @@ def aggregation_decorator(func):
|
|
| 35 |
aggregation_list["end_to_end_time"] = mean
|
| 36 |
aggregation_list["prefilling_time"] = mean
|
| 37 |
aggregation_list["decoding_throughput"] = mean
|
| 38 |
-
aggregation_list["
|
| 39 |
-
aggregation_list["
|
|
|
|
|
|
|
|
|
|
| 40 |
return aggregation_list
|
| 41 |
return wrapper
|
| 42 |
|
|
@@ -48,8 +58,11 @@ def higher_is_better_decorator(func):
|
|
| 48 |
higher_is_better_dict["end_to_end_time"] = False
|
| 49 |
higher_is_better_dict["prefilling_time"] = False
|
| 50 |
higher_is_better_dict["decoding_throughput"] = True
|
| 51 |
-
higher_is_better_dict["
|
| 52 |
-
higher_is_better_dict["
|
|
|
|
|
|
|
|
|
|
| 53 |
return higher_is_better_dict
|
| 54 |
return wrapper
|
| 55 |
|
|
|
|
| 12 |
end_to_end_time = sum([r[1] for r in results]) / len(results)
|
| 13 |
prefilling_time = sum([r[2] for r in results]) / len(results)
|
| 14 |
decoding_throughput = sum([r[3] for r in results]) / len(results)
|
| 15 |
+
decoding_mfu = sum([r[4] for r in results]) / len(results)
|
| 16 |
+
decoding_mbu = sum([r[5] for r in results]) / len(results)
|
| 17 |
+
prefill_throughput = sum([r[6] for r in results]) / len(results)
|
| 18 |
+
prefill_mfu = sum([r[7] for r in results]) / len(results)
|
| 19 |
+
prefill_mbu = sum([r[8] for r in results]) / len(results)
|
| 20 |
+
|
| 21 |
|
| 22 |
# print(f"end_to_end_time: {end_to_end_time}, prefilling_time: {prefilling_time}, decoding_throughput: {decoding_throughput}")
|
| 23 |
|
|
|
|
| 26 |
result_dict["end_to_end_time"] = end_to_end_time
|
| 27 |
result_dict["prefilling_time"] = prefilling_time
|
| 28 |
result_dict["decoding_throughput"] = decoding_throughput
|
| 29 |
+
result_dict["decoding_mfu"] = decoding_mfu
|
| 30 |
+
result_dict["decoding_mbu"] = decoding_mbu
|
| 31 |
+
result_dict["prefill_throughput"] = prefill_throughput
|
| 32 |
+
result_dict["prefill_mfu"] = prefill_mfu
|
| 33 |
+
result_dict["prefill_mbu"] = prefill_mbu
|
| 34 |
return result_dict
|
| 35 |
return wrapper
|
| 36 |
|
|
|
|
| 42 |
aggregation_list["end_to_end_time"] = mean
|
| 43 |
aggregation_list["prefilling_time"] = mean
|
| 44 |
aggregation_list["decoding_throughput"] = mean
|
| 45 |
+
aggregation_list["decoding_mfu"] = mean
|
| 46 |
+
aggregation_list["decoding_mbu"] = mean
|
| 47 |
+
aggregation_list["prefill_throughput"] = mean
|
| 48 |
+
aggregation_list["prefill_mfu"] = mean
|
| 49 |
+
aggregation_list["prefill_mbu"] = mean
|
| 50 |
return aggregation_list
|
| 51 |
return wrapper
|
| 52 |
|
|
|
|
| 58 |
higher_is_better_dict["end_to_end_time"] = False
|
| 59 |
higher_is_better_dict["prefilling_time"] = False
|
| 60 |
higher_is_better_dict["decoding_throughput"] = True
|
| 61 |
+
higher_is_better_dict["decoding_mfu"] = True
|
| 62 |
+
higher_is_better_dict["decoding_mbu"] = True
|
| 63 |
+
higher_is_better_dict["prefill_throughput"] = True
|
| 64 |
+
higher_is_better_dict["prefill_mfu"] = True
|
| 65 |
+
higher_is_better_dict["prefill_mbu"] = True
|
| 66 |
return higher_is_better_dict
|
| 67 |
return wrapper
|
| 68 |
|
src/display/utils.py
CHANGED
|
@@ -9,25 +9,32 @@ def fields(raw_class):
|
|
| 9 |
|
| 10 |
E2Es = "E2E(s)" #"End-to-end time (s)"
|
| 11 |
PREs = "PRE(s)" #"Prefilling time (s)"
|
| 12 |
-
TS = "T/s" #Decoding throughput (tok/s)
|
|
|
|
| 13 |
InFrame = "Method" #"Inference framework"
|
| 14 |
MULTIPLE_CHOICEs = ["mmlu"]
|
| 15 |
|
|
|
|
| 16 |
GPU_TEMP = 'Temp(C)'
|
| 17 |
GPU_Power = 'Power(W)'
|
| 18 |
GPU_Mem = 'Mem(G)'
|
| 19 |
GPU_Name = "GPU"
|
| 20 |
GPU_Util = 'Util(%)'
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
| 23 |
BATCH_SIZE = 'bs'
|
| 24 |
PRECISION = "Precision"
|
| 25 |
system_metrics_to_name_map = {
|
| 26 |
"end_to_end_time": f"{E2Es}",
|
| 27 |
"prefilling_time": f"{PREs}",
|
| 28 |
"decoding_throughput": f"{TS}",
|
| 29 |
-
"
|
| 30 |
-
"
|
|
|
|
|
|
|
|
|
|
| 31 |
}
|
| 32 |
|
| 33 |
gpu_metrics_to_name_map = {
|
|
@@ -78,10 +85,11 @@ class Tasks(Enum):
|
|
| 78 |
|
| 79 |
# # XXX include me back at some point
|
| 80 |
# selfcheck = Task("selfcheckgpt", "max-selfcheckgpt", "SelfCheckGPT")
|
| 81 |
-
|
| 82 |
gsm8k = Task("gsm8k_custom", "em", "GSM8K") #GSM8K/EM (5-shot)
|
| 83 |
# gsm8k_cot = Task("gsm8k_cot", "em", "GSM8K COT") #GSM8K COT/EM (5-shot)
|
| 84 |
arena_hard = Task("arena_hard", "score", "Arena Hard") #Arena Hard/Score
|
|
|
|
| 85 |
|
| 86 |
|
| 87 |
# These classes are for user facing column names,
|
|
@@ -121,8 +129,14 @@ for task in Tasks:
|
|
| 121 |
continue
|
| 122 |
auto_eval_column_dict.append([f"{task.name}_prefilling_time", ColumnContent, ColumnContent(f"{task.value.col_name} {PREs}", "number", False, hidden=True)])
|
| 123 |
auto_eval_column_dict.append([f"{task.name}_decoding_throughput", ColumnContent, ColumnContent(f"{task.value.col_name} {TS}", "number", True, hidden=True)])
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
|
| 128 |
# Model information
|
|
@@ -187,8 +201,9 @@ class InferenceFramework(Enum):
|
|
| 187 |
# MoE_Infinity = ModelDetails("moe-infinity")
|
| 188 |
HF_Chat = ModelDetails("hf-chat")
|
| 189 |
VLLM = ModelDetails("vllm_moe")
|
| 190 |
-
TRTLLM = ModelDetails("tensorrt_llm")
|
| 191 |
VLLM_FIX = ModelDetails("vllm_moe_fixbs")
|
|
|
|
|
|
|
| 192 |
Unknown = ModelDetails("?")
|
| 193 |
|
| 194 |
def to_str(self):
|
|
@@ -206,10 +221,13 @@ class InferenceFramework(Enum):
|
|
| 206 |
return InferenceFramework.VLLM
|
| 207 |
if inference_framework in ["vllm_moe_fixbs"]:
|
| 208 |
return InferenceFramework.VLLM_FIX
|
|
|
|
|
|
|
| 209 |
return InferenceFramework.Unknown
|
| 210 |
|
| 211 |
class GPUType(Enum):
|
| 212 |
A100_sxm = ModelDetails("NVIDIA-A100-SXM4-80GB")
|
|
|
|
| 213 |
A100_pcie = ModelDetails("NVIDIA-A100-PCIe-80GB")
|
| 214 |
Unknown = ModelDetails("?")
|
| 215 |
|
|
|
|
| 9 |
|
| 10 |
E2Es = "E2E(s)" #"End-to-end time (s)"
|
| 11 |
PREs = "PRE(s)" #"Prefilling time (s)"
|
| 12 |
+
TS = "Decoding T/s" #Decoding throughput (tok/s)
|
| 13 |
+
PTS = "Prefill T/s" #Prefill throughput (tok/s)
|
| 14 |
InFrame = "Method" #"Inference framework"
|
| 15 |
MULTIPLE_CHOICEs = ["mmlu"]
|
| 16 |
|
| 17 |
+
|
| 18 |
GPU_TEMP = 'Temp(C)'
|
| 19 |
GPU_Power = 'Power(W)'
|
| 20 |
GPU_Mem = 'Mem(G)'
|
| 21 |
GPU_Name = "GPU"
|
| 22 |
GPU_Util = 'Util(%)'
|
| 23 |
+
DSMFU = 'Decoding S-MFU(%)'
|
| 24 |
+
DSMBU = 'Decoding S-MBU(%)'
|
| 25 |
+
PSMFU = 'Prefill S-MFU(%)'
|
| 26 |
+
PSMBU = 'Prefill S-MBU(%)'
|
| 27 |
BATCH_SIZE = 'bs'
|
| 28 |
PRECISION = "Precision"
|
| 29 |
system_metrics_to_name_map = {
|
| 30 |
"end_to_end_time": f"{E2Es}",
|
| 31 |
"prefilling_time": f"{PREs}",
|
| 32 |
"decoding_throughput": f"{TS}",
|
| 33 |
+
"decoding_mfu": f"{DSMFU}",
|
| 34 |
+
"decoding_mbu": f"{DSMBU}",
|
| 35 |
+
"prefill_throughput": f"{PTS}",
|
| 36 |
+
"prefill_mfu": f"{PSMFU}",
|
| 37 |
+
"prefill_mbu": f"{PSMBU}",
|
| 38 |
}
|
| 39 |
|
| 40 |
gpu_metrics_to_name_map = {
|
|
|
|
| 85 |
|
| 86 |
# # XXX include me back at some point
|
| 87 |
# selfcheck = Task("selfcheckgpt", "max-selfcheckgpt", "SelfCheckGPT")
|
| 88 |
+
# selfcheck = Task("selfcheckgpt", "max-selfcheckgpt", "SelfCheckGPT")
|
| 89 |
gsm8k = Task("gsm8k_custom", "em", "GSM8K") #GSM8K/EM (5-shot)
|
| 90 |
# gsm8k_cot = Task("gsm8k_cot", "em", "GSM8K COT") #GSM8K COT/EM (5-shot)
|
| 91 |
arena_hard = Task("arena_hard", "score", "Arena Hard") #Arena Hard/Score
|
| 92 |
+
mmlu = Task("mmlu", "acc", "MMLU") #MMLU/Acc (5-shot)
|
| 93 |
|
| 94 |
|
| 95 |
# These classes are for user facing column names,
|
|
|
|
| 129 |
continue
|
| 130 |
auto_eval_column_dict.append([f"{task.name}_prefilling_time", ColumnContent, ColumnContent(f"{task.value.col_name} {PREs}", "number", False, hidden=True)])
|
| 131 |
auto_eval_column_dict.append([f"{task.name}_decoding_throughput", ColumnContent, ColumnContent(f"{task.value.col_name} {TS}", "number", True, hidden=True)])
|
| 132 |
+
# if task.value.benchmark != "gsm8k_custom":
|
| 133 |
+
# continue
|
| 134 |
+
auto_eval_column_dict.append([f"{task.name}_decoding_mbu", ColumnContent, ColumnContent(f"{task.value.col_name} {DSMBU}", "number", True, hidden=True)])
|
| 135 |
+
auto_eval_column_dict.append([f"{task.name}_decoding_mfu", ColumnContent, ColumnContent(f"{task.value.col_name} {DSMFU}", "number", True, hidden=True)])
|
| 136 |
+
auto_eval_column_dict.append([f"{task.name}_prefill_throughput", ColumnContent, ColumnContent(f"{task.value.col_name} {PTS}", "number", True, hidden=True)])
|
| 137 |
+
auto_eval_column_dict.append([f"{task.name}_prefill_mbu", ColumnContent, ColumnContent(f"{task.value.col_name} {PSMBU}", "number", True, hidden=True)])
|
| 138 |
+
auto_eval_column_dict.append([f"{task.name}_prefill_mfu", ColumnContent, ColumnContent(f"{task.value.col_name} {PSMFU}", "number", True, hidden=True)])
|
| 139 |
+
|
| 140 |
|
| 141 |
|
| 142 |
# Model information
|
|
|
|
| 201 |
# MoE_Infinity = ModelDetails("moe-infinity")
|
| 202 |
HF_Chat = ModelDetails("hf-chat")
|
| 203 |
VLLM = ModelDetails("vllm_moe")
|
|
|
|
| 204 |
VLLM_FIX = ModelDetails("vllm_moe_fixbs")
|
| 205 |
+
TRTLLM = ModelDetails("tensorrt_llm")
|
| 206 |
+
SGLANG = ModelDetails("sglang")
|
| 207 |
Unknown = ModelDetails("?")
|
| 208 |
|
| 209 |
def to_str(self):
|
|
|
|
| 221 |
return InferenceFramework.VLLM
|
| 222 |
if inference_framework in ["vllm_moe_fixbs"]:
|
| 223 |
return InferenceFramework.VLLM_FIX
|
| 224 |
+
if inference_framework in ["sglang"]:
|
| 225 |
+
return InferenceFramework.SGLANG
|
| 226 |
return InferenceFramework.Unknown
|
| 227 |
|
| 228 |
class GPUType(Enum):
|
| 229 |
A100_sxm = ModelDetails("NVIDIA-A100-SXM4-80GB")
|
| 230 |
+
A100_sxm4 = ModelDetails("NVIDIA-A100-SMX4-80GB")
|
| 231 |
A100_pcie = ModelDetails("NVIDIA-A100-PCIe-80GB")
|
| 232 |
Unknown = ModelDetails("?")
|
| 233 |
|
src/utils.py
CHANGED
|
@@ -4,6 +4,8 @@ import subprocess
|
|
| 4 |
import re
|
| 5 |
import os
|
| 6 |
import GPUtil
|
|
|
|
|
|
|
| 7 |
|
| 8 |
try:
|
| 9 |
from src.display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util, GPU_Name
|
|
@@ -12,44 +14,63 @@ except:
|
|
| 12 |
from display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util, GPU_Name
|
| 13 |
|
| 14 |
MEM_BW_DICT ={
|
| 15 |
-
"NVIDIA-A100-PCIe-80GB":
|
| 16 |
-
"NVIDIA-A100-
|
| 17 |
-
"NVIDIA-H100-PCIe-80GB":
|
| 18 |
-
"NVIDIA-RTX-A5000-24GB":
|
|
|
|
| 19 |
}
|
| 20 |
|
| 21 |
PEAK_FLOPS_DICT = {
|
| 22 |
"float32":{
|
| 23 |
"NVIDIA-A100-PCIe-80GB": 312e12,
|
| 24 |
-
"NVIDIA-A100-
|
| 25 |
"NVIDIA-H100-PCIe-80GB": 756e12,
|
| 26 |
-
"NVIDIA-RTX-A5000-24GB": 222.2e12
|
|
|
|
| 27 |
},
|
| 28 |
"float16":{
|
| 29 |
"NVIDIA-A100-PCIe-80GB": 624e12,
|
| 30 |
-
"NVIDIA-A100-
|
| 31 |
"NVIDIA-H100-PCIe-80GB": 1513e12,
|
| 32 |
-
"NVIDIA-RTX-A5000-24GB":
|
|
|
|
| 33 |
},
|
| 34 |
"bfloat16":{
|
| 35 |
"NVIDIA-A100-PCIe-80GB": 624e12,
|
| 36 |
-
"NVIDIA-A100-
|
| 37 |
"NVIDIA-H100-PCIe-80GB": 1513e12,
|
| 38 |
-
"NVIDIA-RTX-A5000-24GB":
|
|
|
|
| 39 |
},
|
| 40 |
-
"
|
| 41 |
"NVIDIA-A100-PCIe-80GB": 1248e12,
|
| 42 |
-
"NVIDIA-A100-
|
| 43 |
"NVIDIA-H100-PCIe-80GB": 3026e12,
|
| 44 |
-
"NVIDIA-RTX-A5000-24GB":
|
|
|
|
| 45 |
},
|
| 46 |
-
"
|
| 47 |
-
"NVIDIA-A100-PCIe-80GB":
|
| 48 |
-
"NVIDIA-A100-
|
| 49 |
-
"NVIDIA-H100-PCIe-80GB":
|
| 50 |
-
"NVIDIA-RTX-A5000-24GB":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
}
|
| 52 |
-
|
| 53 |
}
|
| 54 |
|
| 55 |
def my_snapshot_download(repo_id, revision, local_dir, repo_type, max_workers):
|
|
@@ -97,7 +118,7 @@ def parse_nvidia_smi():
|
|
| 97 |
# print(f"gpu_indices: {gpu_indices}")
|
| 98 |
gpu_stats = []
|
| 99 |
|
| 100 |
-
gpu_info_pattern = re.compile(r'(\d+)C\s+P\d+\s+(\d+)W
|
| 101 |
# gpu_name_pattern = re.compile(r'NVIDIA\s+([\w\s]+\d+(?:\s*GB)?)')
|
| 102 |
gpu_name_pattern = re.compile(r'NVIDIA\s+(RTX\s+)?([A-Z0-9]+)')
|
| 103 |
|
|
@@ -195,17 +216,790 @@ def get_peak_bw(gpu_name):
|
|
| 195 |
def get_peak_flops(gpu_name, precision):
|
| 196 |
return PEAK_FLOPS_DICT[precision][gpu_name]
|
| 197 |
|
| 198 |
-
def
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
else:
|
| 208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
-
if __name__ == "__main__":
|
| 211 |
-
|
|
|
|
|
|
| 4 |
import re
|
| 5 |
import os
|
| 6 |
import GPUtil
|
| 7 |
+
from transformers import AutoConfig
|
| 8 |
+
from typing import List
|
| 9 |
|
| 10 |
try:
|
| 11 |
from src.display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util, GPU_Name
|
|
|
|
| 14 |
from display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util, GPU_Name
|
| 15 |
|
| 16 |
MEM_BW_DICT ={
|
| 17 |
+
"NVIDIA-A100-PCIe-80GB": 1935e9,
|
| 18 |
+
"NVIDIA-A100-SXM4-80GB": 2039e9,
|
| 19 |
+
"NVIDIA-H100-PCIe-80GB": 2039e9,
|
| 20 |
+
"NVIDIA-RTX-A5000-24GB": 768e9,
|
| 21 |
+
"NVIDIA-RTX-A6000-48GB": 768e9,
|
| 22 |
}
|
| 23 |
|
| 24 |
PEAK_FLOPS_DICT = {
|
| 25 |
"float32":{
|
| 26 |
"NVIDIA-A100-PCIe-80GB": 312e12,
|
| 27 |
+
"NVIDIA-A100-SXM4-80GB": 312e12,
|
| 28 |
"NVIDIA-H100-PCIe-80GB": 756e12,
|
| 29 |
+
"NVIDIA-RTX-A5000-24GB": 222.2e12,
|
| 30 |
+
"NVIDIA-RTX-A6000-48GB": 309.7e12
|
| 31 |
},
|
| 32 |
"float16":{
|
| 33 |
"NVIDIA-A100-PCIe-80GB": 624e12,
|
| 34 |
+
"NVIDIA-A100-SXM4-80GB": 624e12,
|
| 35 |
"NVIDIA-H100-PCIe-80GB": 1513e12,
|
| 36 |
+
"NVIDIA-RTX-A5000-24GB": 222.2e12,
|
| 37 |
+
"NVIDIA-RTX-A6000-48GB": 309.7e12
|
| 38 |
},
|
| 39 |
"bfloat16":{
|
| 40 |
"NVIDIA-A100-PCIe-80GB": 624e12,
|
| 41 |
+
"NVIDIA-A100-SXM4-80GB": 624e12,
|
| 42 |
"NVIDIA-H100-PCIe-80GB": 1513e12,
|
| 43 |
+
"NVIDIA-RTX-A5000-24GB": 222.2e12,
|
| 44 |
+
"NVIDIA-RTX-A6000-48GB": 309.7e12
|
| 45 |
},
|
| 46 |
+
"int8":{
|
| 47 |
"NVIDIA-A100-PCIe-80GB": 1248e12,
|
| 48 |
+
"NVIDIA-A100-SXM4-80GB": 1248e12,
|
| 49 |
"NVIDIA-H100-PCIe-80GB": 3026e12,
|
| 50 |
+
"NVIDIA-RTX-A5000-24GB": 222.2e12,
|
| 51 |
+
"NVIDIA-RTX-A6000-48GB": 309.7e12
|
| 52 |
},
|
| 53 |
+
"fp8":{
|
| 54 |
+
"NVIDIA-A100-PCIe-80GB": 1248e12,
|
| 55 |
+
"NVIDIA-A100-SXM4-80GB": 1248e12,
|
| 56 |
+
"NVIDIA-H100-PCIe-80GB": 3026e12,
|
| 57 |
+
"NVIDIA-RTX-A5000-24GB": 0,
|
| 58 |
+
"NVIDIA-RTX-A6000-48GB": 0
|
| 59 |
+
},
|
| 60 |
+
"fp4": {
|
| 61 |
+
"NVIDIA-A100-PCIe-80GB": 1248e12,
|
| 62 |
+
"NVIDIA-A100-SXM4-80GB": 1248e12,
|
| 63 |
+
"NVIDIA-H100-PCIe-80GB": 3026e12,
|
| 64 |
+
"NVIDIA-RTX-A5000-24GB": 0,
|
| 65 |
+
"NVIDIA-RTX-A6000-48GB": 0
|
| 66 |
+
},
|
| 67 |
+
"int4": {
|
| 68 |
+
"NVIDIA-A100-PCIe-80GB": 1248e12,
|
| 69 |
+
"NVIDIA-A100-SXM4-80GB": 1248e12,
|
| 70 |
+
"NVIDIA-H100-PCIe-80GB": 3026e12,
|
| 71 |
+
"NVIDIA-RTX-A5000-24GB": 222.2e12,
|
| 72 |
+
"NVIDIA-RTX-A6000-48GB": 309.7e12
|
| 73 |
}
|
|
|
|
| 74 |
}
|
| 75 |
|
| 76 |
def my_snapshot_download(repo_id, revision, local_dir, repo_type, max_workers):
|
|
|
|
| 118 |
# print(f"gpu_indices: {gpu_indices}")
|
| 119 |
gpu_stats = []
|
| 120 |
|
| 121 |
+
gpu_info_pattern = re.compile(r'(\d+)C\s+P\d+\s+(\d+)W\s*/\s*\d+W\s*\|\s*(\d+)MiB\s*/\s*\d+MiB\s*\|\s*(\d+)%')
|
| 122 |
# gpu_name_pattern = re.compile(r'NVIDIA\s+([\w\s]+\d+(?:\s*GB)?)')
|
| 123 |
gpu_name_pattern = re.compile(r'NVIDIA\s+(RTX\s+)?([A-Z0-9]+)')
|
| 124 |
|
|
|
|
| 216 |
def get_peak_flops(gpu_name, precision):
|
| 217 |
return PEAK_FLOPS_DICT[precision][gpu_name]
|
| 218 |
|
| 219 |
+
def _calculate_batch_metrics(outputs, decoding_tp, n_layers, d_model,
|
| 220 |
+
n_attn_heads, d_head, n_kv_heads, n_experts_per_tok, d_ff,
|
| 221 |
+
avg_activated_experts, hf_config, num_gpus, model_name,
|
| 222 |
+
used_dtype, batch_size, precision):
|
| 223 |
+
"""Calculate metrics for a batch of outputs"""
|
| 224 |
+
gpu_type = get_gpu_details()
|
| 225 |
+
hardware_specs = {
|
| 226 |
+
"peak_bandwidth_tb": get_peak_bw(gpu_type) / 1e12,
|
| 227 |
+
"peak_flops_tf": get_peak_flops(gpu_type, precision=used_dtype) / 1e12,
|
| 228 |
+
}
|
| 229 |
+
kvs = []
|
| 230 |
+
true_kvs = []
|
| 231 |
+
attn_score = []
|
| 232 |
+
|
| 233 |
+
# Calculate KV sizes
|
| 234 |
+
per_token_kv_size = 2 * n_layers * d_head * n_kv_heads # Default calculation
|
| 235 |
+
|
| 236 |
+
if "DeepSeek" in model_name:
|
| 237 |
+
if hasattr(hf_config, "kv_lora_rank") and hasattr(hf_config, "qk_rope_head_dim"):
|
| 238 |
+
per_token_kv_size = n_layers * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)
|
| 239 |
+
|
| 240 |
+
# Process each output
|
| 241 |
+
for x in outputs:
|
| 242 |
+
output_len = len(x.outputs[0].token_ids)
|
| 243 |
+
context_prefill_size = len(x.prompt_token_ids)
|
| 244 |
+
|
| 245 |
+
# Calculate attention scores
|
| 246 |
+
if "DeepSeek" in model_name and hasattr(hf_config, "qk_rope_head_dim") and hasattr(hf_config, "qk_nope_head_dim") and hasattr(hf_config, "v_head_dim"):
|
| 247 |
+
q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
|
| 248 |
+
origin_per_token_k_state_size = n_layers * n_attn_heads * q_head_dim
|
| 249 |
+
origin_per_token_v_state_size = n_layers * n_attn_heads * hf_config.v_head_dim
|
| 250 |
+
attention_score = context_prefill_size * origin_per_token_k_state_size + (output_len - 1) * origin_per_token_k_state_size / 2
|
| 251 |
+
attention_score += context_prefill_size * origin_per_token_v_state_size + (output_len - 1) * origin_per_token_v_state_size / 2
|
| 252 |
+
attention_score = attention_score / 1e12
|
| 253 |
+
else:
|
| 254 |
+
origin_per_token_kv_states_size = n_layers * n_attn_heads * d_head
|
| 255 |
+
attention_score = context_prefill_size * origin_per_token_kv_states_size + (output_len - 1) * origin_per_token_kv_states_size / 2
|
| 256 |
+
attention_score = attention_score * 2 / 1e12
|
| 257 |
+
|
| 258 |
+
# Store attention scores and KV sizes
|
| 259 |
+
attn_score.append(attention_score)
|
| 260 |
+
kv_size = context_prefill_size * per_token_kv_size + (output_len - 1) * per_token_kv_size / 2
|
| 261 |
+
kv_size = kv_size / 1e12
|
| 262 |
+
true_kv = (context_prefill_size * per_token_kv_size + output_len * per_token_kv_size) / 1e12 * 1e3
|
| 263 |
+
kvs.append(kv_size)
|
| 264 |
+
true_kvs.append(true_kv)
|
| 265 |
+
|
| 266 |
+
# Calculate aggregate values
|
| 267 |
+
kv_size = sum(kvs)
|
| 268 |
+
true_kv_size = sum(true_kvs) * 1e3
|
| 269 |
+
attention_score = sum(attn_score) / len(attn_score)
|
| 270 |
+
|
| 271 |
+
# Calculate attention size per token
|
| 272 |
+
if "DeepSeek" in model_name and hasattr(hf_config, "qk_rope_head_dim") and hasattr(hf_config, "qk_nope_head_dim") and hasattr(hf_config, "v_head_dim") and hasattr(hf_config, "kv_lora_rank"):
|
| 273 |
+
q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
|
| 274 |
+
if not hasattr(hf_config, "q_lora_rank") or not hf_config.q_lora_rank:
|
| 275 |
+
attention_size_per_token = (d_model * n_attn_heads * q_head_dim) + \
|
| 276 |
+
(d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) + \
|
| 277 |
+
(hf_config.kv_lora_rank * n_attn_heads * (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) + \
|
| 278 |
+
(hf_config.v_head_dim * n_attn_heads * d_model)
|
| 279 |
+
attention_size_per_token = attention_size_per_token / 1e12
|
| 280 |
+
else:
|
| 281 |
+
attention_size_per_token = (d_model * hf_config.q_lora_rank) + \
|
| 282 |
+
(hf_config.q_lora_rank * n_attn_heads * q_head_dim) + \
|
| 283 |
+
(d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) + \
|
| 284 |
+
(hf_config.kv_lora_rank * n_attn_heads * (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) + \
|
| 285 |
+
(hf_config.v_head_dim * n_attn_heads * d_model)
|
| 286 |
+
attention_size_per_token = attention_size_per_token / 1e12
|
| 287 |
+
else:
|
| 288 |
+
attention_size_per_token = d_model * (n_attn_heads * d_head + n_kv_heads * d_head * 2) + n_attn_heads * d_head * d_model
|
| 289 |
+
attention_size_per_token = attention_size_per_token / 1e12
|
| 290 |
+
|
| 291 |
+
# Calculate expert sizes
|
| 292 |
+
expert_size = d_ff * 3 * d_model / 1e12
|
| 293 |
+
shared_experts_size_total = 0
|
| 294 |
+
deepseek_dense_ffn_size = 0
|
| 295 |
+
deepseek_sparse_layer_num = 0
|
| 296 |
+
|
| 297 |
+
if "Qwen" in model_name and hasattr(hf_config, "moe_intermediate_size") and hasattr(hf_config, "shared_expert_intermediate_size"):
|
| 298 |
+
d_ff = hf_config.moe_intermediate_size
|
| 299 |
+
d_ff_share = hf_config.shared_expert_intermediate_size
|
| 300 |
+
shared_experts_size = d_ff_share * 3 * d_model
|
| 301 |
+
expert_size = d_ff * 3 * d_model
|
| 302 |
+
shared_experts_size_total = shared_experts_size / 1e12
|
| 303 |
+
expert_size = expert_size / 1e12
|
| 304 |
+
elif "Qwen3" in model_name and hasattr(hf_config, "moe_intermediate_size"):
|
| 305 |
+
d_ff = hf_config.moe_intermediate_size
|
| 306 |
+
expert_size = d_ff * 3 * d_model
|
| 307 |
+
expert_size = expert_size / 1e12
|
| 308 |
+
elif "DeepSeek" in model_name and hasattr(hf_config, "moe_intermediate_size") and hasattr(hf_config, "intermediate_size") and hasattr(hf_config, "first_k_dense_replace"):
|
| 309 |
+
d_ff = hf_config.moe_intermediate_size
|
| 310 |
+
d_ff_dense = hf_config.intermediate_size
|
| 311 |
+
deepseek_num_dense_layer = hf_config.first_k_dense_replace
|
| 312 |
+
shared_experts_size = d_ff * 3 * d_model
|
| 313 |
+
expert_size = d_ff * 3 * d_model
|
| 314 |
+
shared_experts = 2
|
| 315 |
+
shared_experts_size_total = shared_experts_size * shared_experts / 1e12
|
| 316 |
+
expert_size = expert_size / 1e12
|
| 317 |
+
deepseek_sparse_layer_num = n_layers - deepseek_num_dense_layer
|
| 318 |
+
deepseek_dense_ffn_size = d_ff_dense * 3 * d_model / 1e12
|
| 319 |
+
|
| 320 |
+
# Calculate S-MBU and S-MFU
|
| 321 |
+
if "Qwen" in model_name and not "Qwen3" in model_name:
|
| 322 |
+
smbu = ((n_layers*(avg_activated_experts * expert_size + shared_experts_size_total + attention_size_per_token) +
|
| 323 |
+
kv_size) * precision/ (batch_size / decoding_tp)) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
|
| 324 |
+
smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size + shared_experts_size_total) + attention_score) \
|
| 325 |
+
* 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
|
| 326 |
+
elif "Qwen3" in model_name:
|
| 327 |
+
smbu = ((n_layers * (avg_activated_experts * expert_size + attention_size_per_token) +
|
| 328 |
+
kv_size) * precision/ (batch_size / decoding_tp)) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
|
| 329 |
+
smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size) + attention_score) \
|
| 330 |
+
* 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
|
| 331 |
+
elif "DeepSeek" in model_name:
|
| 332 |
+
smbu = ((n_layers * attention_size_per_token + deepseek_sparse_layer_num * \
|
| 333 |
+
(avg_activated_experts * expert_size + shared_experts_size_total) + \
|
| 334 |
+
deepseek_num_dense_layer * deepseek_dense_ffn_size + \
|
| 335 |
+
kv_size) * precision/ (batch_size / decoding_tp)) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
|
| 336 |
+
smfu = (n_layers * attention_size_per_token + deepseek_sparse_layer_num * \
|
| 337 |
+
(n_experts_per_tok * expert_size + shared_experts_size_total) + \
|
| 338 |
+
deepseek_num_dense_layer * deepseek_dense_ffn_size + attention_score) \
|
| 339 |
+
* 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
|
| 340 |
+
else:
|
| 341 |
+
smbu = ((n_layers*(avg_activated_experts * expert_size + attention_size_per_token) +
|
| 342 |
+
kv_size) * precision/ (batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
|
| 343 |
+
smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size) + attention_score) \
|
| 344 |
+
* 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
|
| 345 |
+
|
| 346 |
+
return {
|
| 347 |
+
'smbu': smbu,
|
| 348 |
+
'smfu': smfu,
|
| 349 |
+
'kv_size': true_kv_size,
|
| 350 |
+
'decoding_throughput': decoding_tp
|
| 351 |
+
}
|
| 352 |
+
|
| 353 |
+
def _calculate_batch_metrics_sglang(outputs, decoding_tp, n_layers, d_model,
|
| 354 |
+
n_attn_heads, d_head, n_kv_heads, n_experts_per_tok, d_ff,
|
| 355 |
+
avg_activated_experts, hf_config, num_gpus, model_name,
|
| 356 |
+
used_dtype, batch_size, precision, ttft=None, prefill_tp=None):
|
| 357 |
+
"""Calculate metrics for a batch of outputs"""
|
| 358 |
+
# Initialize hardware specs and output lists
|
| 359 |
+
hardware_specs = _get_hardware_specs(used_dtype)
|
| 360 |
+
output_data = _extract_output_data(outputs)
|
| 361 |
+
|
| 362 |
+
# Calculate model-specific sizes
|
| 363 |
+
per_token_kv_size = _calculate_kv_size(model_name, hf_config, n_layers, d_head, n_kv_heads)
|
| 364 |
+
attention_size_per_token = _calculate_attention_size(model_name, hf_config, d_model, n_attn_heads, d_head, n_kv_heads)
|
| 365 |
+
expert_config = _calculate_expert_config(model_name, hf_config, d_ff, d_model, n_layers)
|
| 366 |
+
|
| 367 |
+
# Process outputs and calculate metrics
|
| 368 |
+
metrics_data = _process_outputs(output_data, per_token_kv_size, attention_size_per_token,
|
| 369 |
+
model_name, hf_config, n_layers, n_attn_heads, d_head)
|
| 370 |
+
|
| 371 |
+
# Calculate throughput metrics
|
| 372 |
+
if ttft is None or prefill_tp is None:
|
| 373 |
+
ttft, prefill_tp = _calculate_throughput_metrics(batch_size, output_data['prefill_lengths'],
|
| 374 |
+
output_data['max_duration'])
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
# Calculate S-MBU and S-MFU
|
| 378 |
+
smbu_smfu_metrics = _calculate_smbu_smfu(model_name, n_layers, attention_size_per_token,
|
| 379 |
+
expert_config, avg_activated_experts, metrics_data,
|
| 380 |
+
hardware_specs, num_gpus, precision, ttft, prefill_tp,
|
| 381 |
+
batch_size, decoding_tp)
|
| 382 |
+
|
| 383 |
+
return {
|
| 384 |
+
'prefill_smbu': smbu_smfu_metrics['prefill_smbu'],
|
| 385 |
+
'prefill_smfu': smbu_smfu_metrics['prefill_smfu'],
|
| 386 |
+
'decoding_smbu': smbu_smfu_metrics['decoding_smbu'],
|
| 387 |
+
'decoding_smfu': smbu_smfu_metrics['decoding_smfu'],
|
| 388 |
+
'kv_size': metrics_data['true_kv_size'],
|
| 389 |
+
'decoding_throughput': decoding_tp,
|
| 390 |
+
'prefill_tp': prefill_tp,
|
| 391 |
+
'ttft': ttft
|
| 392 |
+
}
|
| 393 |
+
|
| 394 |
+
|
| 395 |
+
def _get_hardware_specs(used_dtype):
|
| 396 |
+
"""Get hardware specifications"""
|
| 397 |
+
gpu_type = get_gpu_details()
|
| 398 |
+
return {
|
| 399 |
+
"peak_bandwidth_tb": get_peak_bw(gpu_type) / 1e12,
|
| 400 |
+
"peak_flops_tf": get_peak_flops(gpu_type, precision=used_dtype) / 1e12,
|
| 401 |
+
}
|
| 402 |
+
|
| 403 |
+
|
| 404 |
+
def _extract_output_data(outputs):
|
| 405 |
+
"""Extract relevant data from outputs"""
|
| 406 |
+
prefill_lengths = []
|
| 407 |
+
output_lengths = []
|
| 408 |
+
max_duration = 0.0
|
| 409 |
+
|
| 410 |
+
for x in outputs:
|
| 411 |
+
output_lengths.append(x['meta_info']['completion_tokens'])
|
| 412 |
+
prefill_lengths.append(x['meta_info']['prompt_tokens'])
|
| 413 |
+
max_duration = max(max_duration, x['meta_info']['e2e_latency'])
|
| 414 |
+
|
| 415 |
+
return {
|
| 416 |
+
'prefill_lengths': prefill_lengths,
|
| 417 |
+
'output_lengths': output_lengths,
|
| 418 |
+
'max_duration': max_duration
|
| 419 |
+
}
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
def _calculate_kv_size(model_name, hf_config, n_layers, d_head, n_kv_heads):
|
| 423 |
+
"""Calculate per-token KV size based on model type"""
|
| 424 |
+
if "DeepSeek" in model_name and hasattr(hf_config, "kv_lora_rank") and hasattr(hf_config, "qk_rope_head_dim"):
|
| 425 |
+
return n_layers * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)
|
| 426 |
+
return 2 * n_layers * d_head * n_kv_heads
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
def _calculate_attention_size(model_name, hf_config, d_model, n_attn_heads, d_head, n_kv_heads):
|
| 430 |
+
"""Calculate attention size per token based on model type"""
|
| 431 |
+
if ("DeepSeek" in model_name and
|
| 432 |
+
hasattr(hf_config, "qk_rope_head_dim") and
|
| 433 |
+
hasattr(hf_config, "qk_nope_head_dim") and
|
| 434 |
+
hasattr(hf_config, "v_head_dim") and
|
| 435 |
+
hasattr(hf_config, "kv_lora_rank")):
|
| 436 |
+
|
| 437 |
+
return _calculate_deepseek_attention_size(hf_config, d_model, n_attn_heads)
|
| 438 |
+
|
| 439 |
+
return (d_model * (n_attn_heads * d_head + n_kv_heads * d_head * 2) +
|
| 440 |
+
n_attn_heads * d_head * d_model) / 1e12
|
| 441 |
+
|
| 442 |
+
|
| 443 |
+
def _calculate_deepseek_attention_size(hf_config, d_model, n_attn_heads):
|
| 444 |
+
"""Calculate DeepSeek-specific attention size"""
|
| 445 |
+
q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
|
| 446 |
+
|
| 447 |
+
base_size = ((d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) +
|
| 448 |
+
(hf_config.kv_lora_rank * n_attn_heads *
|
| 449 |
+
(q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) +
|
| 450 |
+
(hf_config.v_head_dim * n_attn_heads * d_model))
|
| 451 |
+
|
| 452 |
+
if hasattr(hf_config, "q_lora_rank") and hf_config.q_lora_rank:
|
| 453 |
+
q_size = (d_model * hf_config.q_lora_rank +
|
| 454 |
+
hf_config.q_lora_rank * n_attn_heads * q_head_dim)
|
| 455 |
+
else:
|
| 456 |
+
q_size = d_model * n_attn_heads * q_head_dim
|
| 457 |
+
|
| 458 |
+
return (base_size + q_size) / 1e12
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
def _calculate_expert_config(model_name, hf_config, d_ff, d_model, n_layers):
|
| 462 |
+
"""Calculate expert configuration based on model type"""
|
| 463 |
+
config = {
|
| 464 |
+
'expert_size': d_ff * 3 * d_model / 1e12,
|
| 465 |
+
'shared_experts_size_total': 0,
|
| 466 |
+
'deepseek_dense_ffn_size': 0,
|
| 467 |
+
'deepseek_sparse_layer_num': 0,
|
| 468 |
+
'deepseek_num_dense_layer': 0
|
| 469 |
+
}
|
| 470 |
+
|
| 471 |
+
if "Qwen" in model_name and not "Qwen3" in model_name:
|
| 472 |
+
config.update(_get_qwen_expert_config(hf_config, d_model))
|
| 473 |
+
elif "Qwen3" in model_name:
|
| 474 |
+
config.update(_get_qwen3_expert_config(hf_config, d_model))
|
| 475 |
+
elif "DeepSeek" in model_name:
|
| 476 |
+
config.update(_get_deepseek_expert_config(hf_config, d_model, n_layers))
|
| 477 |
+
|
| 478 |
+
return config
|
| 479 |
+
|
| 480 |
+
|
| 481 |
+
def _get_qwen_expert_config(hf_config, d_model):
|
| 482 |
+
"""Get Qwen-specific expert configuration"""
|
| 483 |
+
if (hasattr(hf_config, "moe_intermediate_size") and
|
| 484 |
+
hasattr(hf_config, "shared_expert_intermediate_size")):
|
| 485 |
+
|
| 486 |
+
return {
|
| 487 |
+
'expert_size': hf_config.moe_intermediate_size * 3 * d_model / 1e12,
|
| 488 |
+
'shared_experts_size_total': hf_config.shared_expert_intermediate_size * 3 * d_model / 1e12
|
| 489 |
+
}
|
| 490 |
+
return {}
|
| 491 |
+
|
| 492 |
+
|
| 493 |
+
def _get_qwen3_expert_config(hf_config, d_model):
|
| 494 |
+
"""Get Qwen3-specific expert configuration"""
|
| 495 |
+
if hasattr(hf_config, "moe_intermediate_size"):
|
| 496 |
+
return {
|
| 497 |
+
'expert_size': hf_config.moe_intermediate_size * 3 * d_model / 1e12
|
| 498 |
+
}
|
| 499 |
+
return {}
|
| 500 |
+
|
| 501 |
+
|
| 502 |
+
def _get_deepseek_expert_config(hf_config, d_model, n_layers):
|
| 503 |
+
"""Get DeepSeek-specific expert configuration"""
|
| 504 |
+
if (hasattr(hf_config, "moe_intermediate_size") and
|
| 505 |
+
hasattr(hf_config, "intermediate_size") and
|
| 506 |
+
hasattr(hf_config, "first_k_dense_replace")):
|
| 507 |
+
|
| 508 |
+
deepseek_num_dense_layer = hf_config.first_k_dense_replace
|
| 509 |
+
return {
|
| 510 |
+
'expert_size': hf_config.moe_intermediate_size * 3 * d_model / 1e12,
|
| 511 |
+
'shared_experts_size_total': hf_config.moe_intermediate_size * 3 * d_model * 2 / 1e12,
|
| 512 |
+
'deepseek_dense_ffn_size': hf_config.intermediate_size * 3 * d_model / 1e12,
|
| 513 |
+
'deepseek_sparse_layer_num': n_layers - deepseek_num_dense_layer,
|
| 514 |
+
'deepseek_num_dense_layer': deepseek_num_dense_layer
|
| 515 |
+
}
|
| 516 |
+
return {}
|
| 517 |
+
|
| 518 |
+
|
| 519 |
+
def _process_outputs(output_data, per_token_kv_size, attention_size_per_token,
|
| 520 |
+
model_name, hf_config, n_layers, n_attn_heads, d_head):
|
| 521 |
+
"""Process outputs to calculate KV sizes and attention scores"""
|
| 522 |
+
kvs = []
|
| 523 |
+
true_kvs = []
|
| 524 |
+
attn_scores = []
|
| 525 |
+
|
| 526 |
+
for prefill_len, output_len in zip(output_data['prefill_lengths'], output_data['output_lengths']):
|
| 527 |
+
# Calculate attention score
|
| 528 |
+
attn_score = _calculate_attention_score(model_name, hf_config, prefill_len, output_len,
|
| 529 |
+
n_layers, n_attn_heads, d_head)
|
| 530 |
+
attn_scores.append(attn_score)
|
| 531 |
+
|
| 532 |
+
# Calculate KV sizes
|
| 533 |
+
kv_size = (prefill_len * per_token_kv_size + (output_len - 1) * per_token_kv_size / 2) / 1e12
|
| 534 |
+
true_kv = (prefill_len * per_token_kv_size + output_len * per_token_kv_size) / 1e9
|
| 535 |
+
|
| 536 |
+
kvs.append(kv_size)
|
| 537 |
+
true_kvs.append(true_kv)
|
| 538 |
+
|
| 539 |
+
return {
|
| 540 |
+
'kv_size': sum(kvs),
|
| 541 |
+
'true_kv_size': sum(true_kvs) * 1e3,
|
| 542 |
+
'attention_score': sum(attn_scores) / len(attn_scores)
|
| 543 |
+
}
|
| 544 |
+
|
| 545 |
+
|
| 546 |
+
def _calculate_attention_score(model_name, hf_config, prefill_len, output_len,
|
| 547 |
+
n_layers, n_attn_heads, d_head):
|
| 548 |
+
"""Calculate attention score for a single output"""
|
| 549 |
+
if ("DeepSeek" in model_name and
|
| 550 |
+
hasattr(hf_config, "qk_rope_head_dim") and
|
| 551 |
+
hasattr(hf_config, "qk_nope_head_dim") and
|
| 552 |
+
hasattr(hf_config, "v_head_dim")):
|
| 553 |
+
|
| 554 |
+
q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
|
| 555 |
+
k_size = n_layers * n_attn_heads * q_head_dim
|
| 556 |
+
v_size = n_layers * n_attn_heads * hf_config.v_head_dim
|
| 557 |
+
|
| 558 |
+
score = (prefill_len * k_size + (output_len - 1) * k_size / 2 +
|
| 559 |
+
prefill_len * v_size + (output_len - 1) * v_size / 2)
|
| 560 |
+
else:
|
| 561 |
+
kv_size = n_layers * n_attn_heads * d_head
|
| 562 |
+
score = (prefill_len * kv_size + (output_len - 1) * kv_size / 2) * 2
|
| 563 |
+
|
| 564 |
+
return score / 1e12
|
| 565 |
+
|
| 566 |
+
|
| 567 |
+
def _calculate_throughput_metrics(batch_size, prefill_lengths, max_duration):
|
| 568 |
+
"""Calculate throughput metrics"""
|
| 569 |
+
total_prefill = sum(prefill_lengths)
|
| 570 |
+
prefill_tp = total_prefill / (max_duration)
|
| 571 |
+
ttft = max_duration / batch_size
|
| 572 |
+
return ttft, prefill_tp
|
| 573 |
+
|
| 574 |
+
|
| 575 |
+
def _calculate_smbu_smfu(model_name, n_layers, attention_size_per_token, expert_config,
|
| 576 |
+
avg_activated_experts, metrics_data, hardware_specs, num_gpus,
|
| 577 |
+
precision, ttft, prefill_tp, batch_size, decoding_tp):
|
| 578 |
+
"""Calculate S-MBU and S-MFU metrics"""
|
| 579 |
+
prefill_activation = avg_activated_experts[1]
|
| 580 |
+
decode_steps_activation = avg_activated_experts[2:]
|
| 581 |
+
|
| 582 |
+
# Calculate prefill metrics
|
| 583 |
+
prefill_smbu, prefill_smfu = _calculate_prefill_metrics(
|
| 584 |
+
model_name, n_layers, attention_size_per_token, expert_config,
|
| 585 |
+
prefill_activation, metrics_data['attention_score'], hardware_specs,
|
| 586 |
+
num_gpus, precision, ttft, prefill_tp
|
| 587 |
+
)
|
| 588 |
+
|
| 589 |
+
# Calculate decoding metrics
|
| 590 |
+
decoding_smbu, decoding_smfu = _calculate_decoding_metrics(
|
| 591 |
+
model_name, n_layers, attention_size_per_token, expert_config,
|
| 592 |
+
decode_steps_activation, metrics_data, hardware_specs,
|
| 593 |
+
num_gpus, precision, batch_size, decoding_tp
|
| 594 |
+
)
|
| 595 |
+
|
| 596 |
+
return {
|
| 597 |
+
'prefill_smbu': prefill_smbu,
|
| 598 |
+
'prefill_smfu': prefill_smfu,
|
| 599 |
+
'decoding_smbu': decoding_smbu,
|
| 600 |
+
'decoding_smfu': decoding_smfu
|
| 601 |
+
}
|
| 602 |
+
|
| 603 |
+
|
| 604 |
+
def _calculate_prefill_metrics(model_name, n_layers, attention_size_per_token, expert_config,
|
| 605 |
+
prefill_activation, attention_score, hardware_specs,
|
| 606 |
+
num_gpus, precision, ttft, prefill_tp):
|
| 607 |
+
"""Calculate prefill S-MBU and S-MFU"""
|
| 608 |
+
model_calculators = {
|
| 609 |
+
'Qwen': _calculate_qwen_prefill,
|
| 610 |
+
'Qwen3': _calculate_qwen3_prefill,
|
| 611 |
+
'DeepSeek': _calculate_deepseek_prefill
|
| 612 |
+
}
|
| 613 |
+
|
| 614 |
+
for model_type, calculator in model_calculators.items():
|
| 615 |
+
if model_type in model_name and (model_type != 'Qwen' or 'Qwen3' not in model_name):
|
| 616 |
+
return calculator(n_layers, attention_size_per_token, expert_config,
|
| 617 |
+
prefill_activation, attention_score, hardware_specs,
|
| 618 |
+
num_gpus, precision, ttft, prefill_tp)
|
| 619 |
+
|
| 620 |
+
# Default case
|
| 621 |
+
return _calculate_default_prefill(n_layers, attention_size_per_token, expert_config,
|
| 622 |
+
prefill_activation, attention_score, hardware_specs,
|
| 623 |
+
num_gpus, precision, ttft, prefill_tp)
|
| 624 |
+
|
| 625 |
+
|
| 626 |
+
def _calculate_decoding_metrics(model_name, n_layers, attention_size_per_token, expert_config,
|
| 627 |
+
decode_steps_activation, metrics_data, hardware_specs,
|
| 628 |
+
num_gpus, precision, batch_size, decoding_tp):
|
| 629 |
+
"""Calculate decoding S-MBU and S-MFU"""
|
| 630 |
+
decoding_smbus = []
|
| 631 |
+
|
| 632 |
+
for activation in decode_steps_activation:
|
| 633 |
+
if "Qwen" in model_name and "Qwen3" not in model_name:
|
| 634 |
+
smbu, smfu = _calculate_qwen_decoding(n_layers, attention_size_per_token, expert_config,
|
| 635 |
+
activation, metrics_data, hardware_specs, num_gpus,
|
| 636 |
+
precision, batch_size, decoding_tp)
|
| 637 |
+
elif "Qwen3" in model_name:
|
| 638 |
+
smbu, smfu = _calculate_qwen3_decoding(n_layers, attention_size_per_token, expert_config,
|
| 639 |
+
activation, metrics_data, hardware_specs, num_gpus,
|
| 640 |
+
precision, batch_size, decoding_tp)
|
| 641 |
+
elif "DeepSeek" in model_name:
|
| 642 |
+
smbu, smfu = _calculate_deepseek_decoding(n_layers, attention_size_per_token, expert_config,
|
| 643 |
+
activation, metrics_data, hardware_specs, num_gpus,
|
| 644 |
+
precision, batch_size, decoding_tp)
|
| 645 |
+
else:
|
| 646 |
+
smbu, smfu = _calculate_default_decoding(n_layers, attention_size_per_token, expert_config,
|
| 647 |
+
activation, metrics_data, hardware_specs, num_gpus,
|
| 648 |
+
precision, batch_size, decoding_tp)
|
| 649 |
+
decoding_smbus.append(smbu)
|
| 650 |
+
|
| 651 |
+
return sum(decoding_smbus) / len(decoding_smbus), smfu
|
| 652 |
+
|
| 653 |
+
|
| 654 |
+
# Helper functions for specific model calculations
|
| 655 |
+
def _calculate_qwen_prefill(n_layers, attention_size_per_token, expert_config, prefill_activation,
|
| 656 |
+
attention_score, hardware_specs, num_gpus, precision, ttft, prefill_tp):
|
| 657 |
+
smbu_numerator = (n_layers * (prefill_activation * expert_config['expert_size'] +
|
| 658 |
+
expert_config['shared_experts_size_total'] +
|
| 659 |
+
attention_size_per_token)) * precision / ttft
|
| 660 |
+
smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
|
| 661 |
+
|
| 662 |
+
smfu_numerator = (n_layers * (attention_size_per_token + expert_config['expert_size'] +
|
| 663 |
+
expert_config['shared_experts_size_total']) + attention_score) * 2 * prefill_tp
|
| 664 |
+
smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
|
| 665 |
+
|
| 666 |
+
return smbu, smfu
|
| 667 |
+
|
| 668 |
+
|
| 669 |
+
def _calculate_qwen3_prefill(n_layers, attention_size_per_token, expert_config, prefill_activation,
|
| 670 |
+
attention_score, hardware_specs, num_gpus, precision, ttft, prefill_tp):
|
| 671 |
+
smbu_numerator = (n_layers * (prefill_activation * expert_config['expert_size'] +
|
| 672 |
+
attention_size_per_token)) * precision / ttft
|
| 673 |
+
smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
|
| 674 |
+
|
| 675 |
+
smfu_numerator = (n_layers * (attention_size_per_token + expert_config['expert_size']) +
|
| 676 |
+
attention_score) * 2 * prefill_tp
|
| 677 |
+
smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
|
| 678 |
+
|
| 679 |
+
return smbu, smfu
|
| 680 |
+
|
| 681 |
+
|
| 682 |
+
def _calculate_deepseek_prefill(n_layers, attention_size_per_token, expert_config, prefill_activation,
|
| 683 |
+
attention_score, hardware_specs, num_gpus, precision, ttft, prefill_tp):
|
| 684 |
+
smbu_numerator = ((n_layers * attention_size_per_token +
|
| 685 |
+
expert_config['deepseek_sparse_layer_num'] *
|
| 686 |
+
(prefill_activation * expert_config['expert_size'] +
|
| 687 |
+
expert_config['shared_experts_size_total']) +
|
| 688 |
+
expert_config['deepseek_num_dense_layer'] *
|
| 689 |
+
expert_config['deepseek_dense_ffn_size']) * precision / ttft)
|
| 690 |
+
smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
|
| 691 |
+
|
| 692 |
+
smfu_numerator = ((n_layers * attention_size_per_token +
|
| 693 |
+
expert_config['deepseek_sparse_layer_num'] *
|
| 694 |
+
(expert_config['expert_size'] + expert_config['shared_experts_size_total']) +
|
| 695 |
+
expert_config['deepseek_num_dense_layer'] *
|
| 696 |
+
expert_config['deepseek_dense_ffn_size'] + attention_score) * 2 * prefill_tp)
|
| 697 |
+
smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
|
| 698 |
+
|
| 699 |
+
return smbu, smfu
|
| 700 |
+
|
| 701 |
+
|
| 702 |
+
def _calculate_default_prefill(n_layers, attention_size_per_token, expert_config, prefill_activation,
|
| 703 |
+
attention_score, hardware_specs, num_gpus, precision, ttft, prefill_tp):
|
| 704 |
+
# Default implementation
|
| 705 |
+
smbu_numerator = (n_layers * (prefill_activation * expert_config['expert_size'] +
|
| 706 |
+
attention_size_per_token)) * precision / ttft
|
| 707 |
+
smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
|
| 708 |
+
|
| 709 |
+
smfu_numerator = (n_layers * (attention_size_per_token + expert_config['expert_size']) +
|
| 710 |
+
attention_score) * 2 * prefill_tp
|
| 711 |
+
smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
|
| 712 |
+
|
| 713 |
+
return smbu, smfu
|
| 714 |
+
|
| 715 |
+
|
| 716 |
+
def _calculate_qwen_decoding(n_layers, attention_size_per_token, expert_config, activation,
|
| 717 |
+
metrics_data, hardware_specs, num_gpus, precision, batch_size, decoding_tp):
|
| 718 |
+
smbu_numerator = ((n_layers * (activation * expert_config['expert_size'] +
|
| 719 |
+
expert_config['shared_experts_size_total'] +
|
| 720 |
+
attention_size_per_token) +
|
| 721 |
+
metrics_data['kv_size']) * precision / (batch_size / decoding_tp))
|
| 722 |
+
smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
|
| 723 |
+
|
| 724 |
+
smfu_numerator = ((n_layers * (attention_size_per_token + expert_config['expert_size'] +
|
| 725 |
+
expert_config['shared_experts_size_total']) +
|
| 726 |
+
metrics_data['attention_score']) * 2 * decoding_tp)
|
| 727 |
+
smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
|
| 728 |
+
|
| 729 |
+
return smbu, smfu
|
| 730 |
+
|
| 731 |
+
|
| 732 |
+
def _calculate_qwen3_decoding(n_layers, attention_size_per_token, expert_config, activation,
|
| 733 |
+
metrics_data, hardware_specs, num_gpus, precision, batch_size, decoding_tp):
|
| 734 |
+
smbu_numerator = ((n_layers * (activation * expert_config['expert_size'] +
|
| 735 |
+
attention_size_per_token) +
|
| 736 |
+
metrics_data['kv_size']) * precision / (batch_size / decoding_tp))
|
| 737 |
+
smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
|
| 738 |
+
|
| 739 |
+
smfu_numerator = ((n_layers * (attention_size_per_token + expert_config['expert_size']) +
|
| 740 |
+
metrics_data['attention_score']) * 2 * decoding_tp)
|
| 741 |
+
smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
|
| 742 |
+
|
| 743 |
+
return smbu, smfu
|
| 744 |
+
|
| 745 |
+
|
| 746 |
+
def _calculate_deepseek_decoding(n_layers, attention_size_per_token, expert_config, activation,
|
| 747 |
+
metrics_data, hardware_specs, num_gpus, precision, batch_size, decoding_tp):
|
| 748 |
+
smbu_numerator = ((n_layers * attention_size_per_token +
|
| 749 |
+
expert_config['deepseek_sparse_layer_num'] *
|
| 750 |
+
(activation * expert_config['expert_size'] +
|
| 751 |
+
expert_config['shared_experts_size_total']) +
|
| 752 |
+
expert_config['deepseek_num_dense_layer'] *
|
| 753 |
+
expert_config['deepseek_dense_ffn_size'] +
|
| 754 |
+
metrics_data['kv_size']) * precision / (batch_size / decoding_tp))
|
| 755 |
+
smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
|
| 756 |
+
|
| 757 |
+
smfu_numerator = ((n_layers * attention_size_per_token +
|
| 758 |
+
expert_config['deepseek_sparse_layer_num'] *
|
| 759 |
+
(expert_config['expert_size'] + expert_config['shared_experts_size_total']) +
|
| 760 |
+
expert_config['deepseek_num_dense_layer'] *
|
| 761 |
+
expert_config['deepseek_dense_ffn_size'] +
|
| 762 |
+
metrics_data['attention_score']) * 2 * decoding_tp)
|
| 763 |
+
smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
|
| 764 |
+
|
| 765 |
+
return smbu, smfu
|
| 766 |
+
|
| 767 |
+
|
| 768 |
+
def _calculate_default_decoding(n_layers, attention_size_per_token, expert_config, activation,
|
| 769 |
+
metrics_data, hardware_specs, num_gpus, precision, batch_size, decoding_tp):
|
| 770 |
+
smbu_numerator = ((n_layers * (activation * expert_config['expert_size'] +
|
| 771 |
+
attention_size_per_token) +
|
| 772 |
+
metrics_data['kv_size']) * precision / (batch_size / decoding_tp))
|
| 773 |
+
smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
|
| 774 |
+
|
| 775 |
+
smfu_numerator = ((n_layers * (attention_size_per_token + expert_config['expert_size']) +
|
| 776 |
+
metrics_data['attention_score']) * 2 * decoding_tp)
|
| 777 |
+
smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
|
| 778 |
+
|
| 779 |
+
return smbu, smfu
|
| 780 |
+
|
| 781 |
+
def _calculate_batch_metrics_hflm(output_len, context_prefill_size, decoding_tp, n_layers, d_model,
|
| 782 |
+
n_attn_heads, d_head, n_kv_heads, n_experts_per_tok, d_ff,
|
| 783 |
+
avg_activated_experts, hf_config, num_gpus, model_name,
|
| 784 |
+
used_dtype, batch_size, precision):
|
| 785 |
+
"""Calculate metrics for a batch of outputs"""
|
| 786 |
+
gpu_type = get_gpu_details()
|
| 787 |
+
hardware_specs = {
|
| 788 |
+
"peak_bandwidth_tb": get_peak_bw(gpu_type) / 1e12,
|
| 789 |
+
"peak_flops_tf": get_peak_flops(gpu_type, precision=used_dtype) / 1e12,
|
| 790 |
+
}
|
| 791 |
+
|
| 792 |
+
# Calculate KV sizes
|
| 793 |
+
per_token_kv_size = 2 * n_layers * d_head * n_kv_heads # Default calculation
|
| 794 |
+
|
| 795 |
+
if "DeepSeek" in model_name:
|
| 796 |
+
if hasattr(hf_config, "kv_lora_rank") and hasattr(hf_config, "qk_rope_head_dim"):
|
| 797 |
+
per_token_kv_size = n_layers * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)
|
| 798 |
+
|
| 799 |
+
|
| 800 |
+
# Calculate attention scores
|
| 801 |
+
if "DeepSeek" in model_name and hasattr(hf_config, "qk_rope_head_dim") and hasattr(hf_config, "qk_nope_head_dim") and hasattr(hf_config, "v_head_dim"):
|
| 802 |
+
q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
|
| 803 |
+
origin_per_token_k_state_size = n_layers * n_attn_heads * q_head_dim
|
| 804 |
+
origin_per_token_v_state_size = n_layers * n_attn_heads * hf_config.v_head_dim
|
| 805 |
+
attention_score = context_prefill_size * origin_per_token_k_state_size + (output_len - 1) * origin_per_token_k_state_size / 2
|
| 806 |
+
attention_score += context_prefill_size * origin_per_token_v_state_size + (output_len - 1) * origin_per_token_v_state_size / 2
|
| 807 |
+
attention_score = attention_score / 1e12
|
| 808 |
else:
|
| 809 |
+
origin_per_token_kv_states_size = n_layers * n_attn_heads * d_head
|
| 810 |
+
attention_score = context_prefill_size * origin_per_token_kv_states_size + (output_len - 1) * origin_per_token_kv_states_size / 2
|
| 811 |
+
attention_score = attention_score * 2 / 1e12
|
| 812 |
+
|
| 813 |
+
# Store attention scores and KV sizes
|
| 814 |
+
kv_size = context_prefill_size * per_token_kv_size + (output_len - 1) * per_token_kv_size / 2
|
| 815 |
+
kv_size = kv_size / 1e12
|
| 816 |
+
true_kv = (context_prefill_size * per_token_kv_size + output_len * per_token_kv_size) / 1e12 * 1e3
|
| 817 |
+
|
| 818 |
+
# Calculate aggregate values
|
| 819 |
+
kv_size = kv_size * batch_size
|
| 820 |
+
true_kv_size = true_kv * batch_size * 1e3
|
| 821 |
+
# Calculate attention size per token
|
| 822 |
+
if "DeepSeek" in model_name and hasattr(hf_config, "qk_rope_head_dim") and hasattr(hf_config, "qk_nope_head_dim") and hasattr(hf_config, "v_head_dim") and hasattr(hf_config, "kv_lora_rank"):
|
| 823 |
+
q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
|
| 824 |
+
if not hasattr(hf_config, "q_lora_rank") or not hf_config.q_lora_rank:
|
| 825 |
+
attention_size_per_token = (d_model * n_attn_heads * q_head_dim) + \
|
| 826 |
+
(d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) + \
|
| 827 |
+
(hf_config.kv_lora_rank * n_attn_heads * (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) + \
|
| 828 |
+
(hf_config.v_head_dim * n_attn_heads * d_model)
|
| 829 |
+
attention_size_per_token = attention_size_per_token / 1e12
|
| 830 |
+
else:
|
| 831 |
+
attention_size_per_token = (d_model * hf_config.q_lora_rank) + \
|
| 832 |
+
(hf_config.q_lora_rank * n_attn_heads * q_head_dim) + \
|
| 833 |
+
(d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) + \
|
| 834 |
+
(hf_config.kv_lora_rank * n_attn_heads * (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) + \
|
| 835 |
+
(hf_config.v_head_dim * n_attn_heads * d_model)
|
| 836 |
+
attention_size_per_token = attention_size_per_token / 1e12
|
| 837 |
+
else:
|
| 838 |
+
attention_size_per_token = d_model * (n_attn_heads * d_head + n_kv_heads * d_head * 2) + n_attn_heads * d_head * d_model
|
| 839 |
+
attention_size_per_token = attention_size_per_token / 1e12
|
| 840 |
+
|
| 841 |
+
# Calculate expert sizes
|
| 842 |
+
expert_size = d_ff * 3 * d_model / 1e12
|
| 843 |
+
shared_experts_size_total = 0
|
| 844 |
+
deepseek_dense_ffn_size = 0
|
| 845 |
+
deepseek_sparse_layer_num = 0
|
| 846 |
+
|
| 847 |
+
if "Qwen" in model_name and hasattr(hf_config, "moe_intermediate_size") and hasattr(hf_config, "shared_expert_intermediate_size"):
|
| 848 |
+
d_ff = hf_config.moe_intermediate_size
|
| 849 |
+
d_ff_share = hf_config.shared_expert_intermediate_size
|
| 850 |
+
shared_experts_size = d_ff_share * 3 * d_model
|
| 851 |
+
expert_size = d_ff * 3 * d_model
|
| 852 |
+
shared_experts_size_total = shared_experts_size / 1e12
|
| 853 |
+
expert_size = expert_size / 1e12
|
| 854 |
+
elif "Qwen3" in model_name and hasattr(hf_config, "moe_intermediate_size"):
|
| 855 |
+
d_ff = hf_config.moe_intermediate_size
|
| 856 |
+
expert_size = d_ff * 3 * d_model
|
| 857 |
+
expert_size = expert_size / 1e12
|
| 858 |
+
elif "DeepSeek" in model_name and hasattr(hf_config, "moe_intermediate_size") and hasattr(hf_config, "intermediate_size") and hasattr(hf_config, "first_k_dense_replace"):
|
| 859 |
+
d_ff = hf_config.moe_intermediate_size
|
| 860 |
+
d_ff_dense = hf_config.intermediate_size
|
| 861 |
+
deepseek_num_dense_layer = hf_config.first_k_dense_replace
|
| 862 |
+
shared_experts_size = d_ff * 3 * d_model
|
| 863 |
+
expert_size = d_ff * 3 * d_model
|
| 864 |
+
shared_experts = 2
|
| 865 |
+
shared_experts_size_total = shared_experts_size * shared_experts / 1e12
|
| 866 |
+
expert_size = expert_size / 1e12
|
| 867 |
+
deepseek_sparse_layer_num = n_layers - deepseek_num_dense_layer
|
| 868 |
+
deepseek_dense_ffn_size = d_ff_dense * 3 * d_model / 1e12
|
| 869 |
+
|
| 870 |
+
# Calculate S-MBU and S-MFU
|
| 871 |
+
if "Qwen" in model_name:
|
| 872 |
+
smbu = ((n_layers*(avg_activated_experts * expert_size + shared_experts_size_total + attention_size_per_token) +
|
| 873 |
+
kv_size) * precision/(batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
|
| 874 |
+
smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size + shared_experts_size_total) + attention_score) \
|
| 875 |
+
* 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
|
| 876 |
+
elif "Qwen3" in model_name:
|
| 877 |
+
smbu = ((n_layers * (avg_activated_experts * expert_size + attention_size_per_token) +
|
| 878 |
+
kv_size) * precision/(batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
|
| 879 |
+
smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size) + attention_score) \
|
| 880 |
+
* 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
|
| 881 |
+
elif "DeepSeek" in model_name:
|
| 882 |
+
smbu = ((n_layers * attention_size_per_token + deepseek_sparse_layer_num * \
|
| 883 |
+
(avg_activated_experts * expert_size + shared_experts_size_total) + \
|
| 884 |
+
deepseek_num_dense_layer * deepseek_dense_ffn_size + \
|
| 885 |
+
kv_size) * precision/(batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
|
| 886 |
+
smfu = (n_layers * attention_size_per_token + deepseek_sparse_layer_num * \
|
| 887 |
+
(n_experts_per_tok * expert_size + shared_experts_size_total) + \
|
| 888 |
+
deepseek_num_dense_layer * deepseek_dense_ffn_size + attention_score) \
|
| 889 |
+
* 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
|
| 890 |
+
else:
|
| 891 |
+
smbu = ((n_layers*(avg_activated_experts * expert_size + attention_size_per_token) +
|
| 892 |
+
kv_size) * precision/(batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
|
| 893 |
+
smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size) + attention_score) \
|
| 894 |
+
* 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
|
| 895 |
+
|
| 896 |
+
return {
|
| 897 |
+
'smbu': smbu,
|
| 898 |
+
'smfu': smfu,
|
| 899 |
+
'kv_size': true_kv_size,
|
| 900 |
+
'decoding_throughput': decoding_tp,
|
| 901 |
+
'ttft': 0
|
| 902 |
+
}
|
| 903 |
+
class ModelInfoRetriever:
|
| 904 |
+
def __init__(self, model_name: str, precision: str = 'float16'):
|
| 905 |
+
if precision not in ['float32', 'float16', 'bfloat16', 'int8', 'int4', 'awq', 'gptq', 'fp8', 'fp4']:
|
| 906 |
+
raise ValueError("Precision must be one of ['float32', 'float16', 'bfloat16', 'int8', 'int4', 'awq', 'gptq', 'fp8', 'fp4']")
|
| 907 |
+
self.model_name = model_name
|
| 908 |
+
self.precision = precision
|
| 909 |
+
self.config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
| 910 |
+
self.model_type = self.config.model_type
|
| 911 |
+
|
| 912 |
+
def get_model_precision_bits(self):
|
| 913 |
+
"""Returns bit width used by the given quantization format."""
|
| 914 |
+
if self.precision == 'float32':
|
| 915 |
+
return 4
|
| 916 |
+
if self.precision in ['float16', 'bfloat16']:
|
| 917 |
+
return 2
|
| 918 |
+
if self.precision in ['int8', 'fp8']:
|
| 919 |
+
return 1
|
| 920 |
+
if self.precision in ['int4', 'fp4', 'gptq', 'awq']:
|
| 921 |
+
return 0.5
|
| 922 |
+
raise ValueError(f"Unsupported precision: {self.precision}")
|
| 923 |
+
|
| 924 |
+
def get_attention_info(self):
|
| 925 |
+
"""Returns attention-related info"""
|
| 926 |
+
return {
|
| 927 |
+
'num_attention_heads': getattr(self.config, "num_attention_heads", None),
|
| 928 |
+
'num_key_value_heads': getattr(self.config, "num_key_value_heads", getattr(self.config, "num_kv_heads", None)),
|
| 929 |
+
'head_dim': getattr(self.config, "head_dim", getattr(self.config, "hidden_size", None) // getattr(self.config, "num_attention_heads", 1))
|
| 930 |
+
}
|
| 931 |
+
|
| 932 |
+
def get_rope_info(self):
|
| 933 |
+
"""Returns RoPE (rotary embedding) info if available"""
|
| 934 |
+
if hasattr(self.config, "rope_scaling"):
|
| 935 |
+
return {
|
| 936 |
+
"type": self.config.rope_scaling.get("type"),
|
| 937 |
+
"factor": self.config.rope_scaling.get("factor")
|
| 938 |
+
}
|
| 939 |
+
elif hasattr(self.config, "use_alibi"):
|
| 940 |
+
return {"type": "alibi", "enabled": self.config.use_alibi}
|
| 941 |
+
else:
|
| 942 |
+
return {"type": "none"}
|
| 943 |
+
|
| 944 |
+
def get_moe_info(self, d_model=None):
|
| 945 |
+
"""Returns MoE configuration such as number of experts and FFN dim"""
|
| 946 |
+
if d_model is None:
|
| 947 |
+
d_model = getattr(self.config, "hidden_size", None)
|
| 948 |
+
|
| 949 |
+
num_experts = (
|
| 950 |
+
getattr(self.config, "num_local_experts", None) or
|
| 951 |
+
getattr(self.config, "num_experts", None) or
|
| 952 |
+
getattr(self.config, "n_routed_experts", None) or
|
| 953 |
+
getattr(getattr(self.config, "ffn_config", {}), "moe_num_experts", None) or
|
| 954 |
+
1
|
| 955 |
+
)
|
| 956 |
+
n_experts_per_tok = (
|
| 957 |
+
getattr(self.config, "num_experts_per_tok", None) or
|
| 958 |
+
getattr(self.config, "num_selected_experts", None) or
|
| 959 |
+
getattr(getattr(self.config, "ffn_config", {}), "moe_top_k", None) or
|
| 960 |
+
1
|
| 961 |
+
)
|
| 962 |
+
d_ff = (
|
| 963 |
+
getattr(self.config, "ffn_dim", None) or
|
| 964 |
+
getattr(self.config, "intermediate_size", None) or
|
| 965 |
+
getattr(self.config, "d_ff", None) or
|
| 966 |
+
(d_model * getattr(self.config, "ff_ratio", 4)) or
|
| 967 |
+
getattr(getattr(self.config, "ffn_config", {}), "ffn_hidden_size", None) or
|
| 968 |
+
(4 * d_model)
|
| 969 |
+
)
|
| 970 |
+
|
| 971 |
+
return {
|
| 972 |
+
"num_experts": num_experts,
|
| 973 |
+
"experts_per_token": n_experts_per_tok,
|
| 974 |
+
"ffn_dim": d_ff
|
| 975 |
+
}
|
| 976 |
+
|
| 977 |
+
def get_architecture_info(self):
|
| 978 |
+
"""Returns model-wide architecture info"""
|
| 979 |
+
return {
|
| 980 |
+
"model_type": self.model_type,
|
| 981 |
+
"hidden_size": getattr(self.config, "hidden_size", None),
|
| 982 |
+
"num_hidden_layers": getattr(self.config, "num_hidden_layers", None),
|
| 983 |
+
"max_position_embeddings": getattr(self.config, "max_position_embeddings", None),
|
| 984 |
+
"vocab_size": getattr(self.config, "vocab_size", None),
|
| 985 |
+
"architectures": getattr(self.config, "architectures", []),
|
| 986 |
+
}
|
| 987 |
+
|
| 988 |
+
def summarize(self):
|
| 989 |
+
"""Aggregate all extracted info in a dictionary"""
|
| 990 |
+
d_model = getattr(self.config, "hidden_size", None)
|
| 991 |
+
return {
|
| 992 |
+
"model_name": self.model_name,
|
| 993 |
+
"model_type": self.model_type,
|
| 994 |
+
"precision_bits": self.get_model_precision_bits(),
|
| 995 |
+
"architecture": self.get_architecture_info(),
|
| 996 |
+
"attention": self.get_attention_info(),
|
| 997 |
+
"rope": self.get_rope_info(),
|
| 998 |
+
"moe": self.get_moe_info(d_model)
|
| 999 |
+
}
|
| 1000 |
+
|
| 1001 |
+
|
| 1002 |
|
| 1003 |
+
# if __name__ == "__main__":
|
| 1004 |
+
# print(analyze_gpu_stats(parse_nvidia_smi()))
|
| 1005 |
+
# print(get_gpu_details())
|