Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -22,18 +22,22 @@ def load_data(file_path):
|
|
| 22 |
# Function to style the DataFrame
|
| 23 |
def style_dataframe(df: pd.DataFrame):
|
| 24 |
df[RESULTS_COLUMN_NAME] = df.apply(lambda row: [row[SENTIMENT_COLUMN_NAME], row[UNDERSTANDING_COLUMN_NAME], row[PHRASEOLOGY_COLUMN_NAME]], axis=1)
|
| 25 |
-
|
| 26 |
# Insert the new column after the 'Average' column
|
| 27 |
cols = list(df.columns)
|
| 28 |
cols.insert(cols.index(AVERAGE_COLUMN_NAME) + 1, cols.pop(cols.index(RESULTS_COLUMN_NAME)))
|
| 29 |
df = df[cols]
|
| 30 |
-
|
| 31 |
# Create a color ramp using Seaborn
|
| 32 |
return df
|
| 33 |
|
| 34 |
def styler(df: pd.DataFrame):
|
| 35 |
palette = sns.color_palette("RdYlGn", as_cmap=True)
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
return styled_df
|
| 38 |
|
| 39 |
|
|
@@ -136,14 +140,15 @@ with tab1:
|
|
| 136 |
|
| 137 |
# Display the styled DataFrame
|
| 138 |
data = load_data('data.json')
|
| 139 |
-
|
|
|
|
| 140 |
data = data.sort_values(by=AVERAGE_COLUMN_NAME, ascending=False)
|
| 141 |
styled_df_show = style_dataframe(data)
|
| 142 |
styled_df_show = styler(styled_df_show)
|
| 143 |
|
| 144 |
st.data_editor(styled_df_show, column_config={
|
| 145 |
"Model": st.column_config.TextColumn("Model", help="Model name", width="large"),
|
| 146 |
-
"Params": st.column_config.NumberColumn("Params [B]"
|
| 147 |
AVERAGE_COLUMN_NAME: st.column_config.NumberColumn(AVERAGE_COLUMN_NAME),
|
| 148 |
RESULTS_COLUMN_NAME: st.column_config.BarChartColumn(
|
| 149 |
"Bar chart of results", help="Summary of the results of each task",
|
|
|
|
| 22 |
# Function to style the DataFrame
|
| 23 |
def style_dataframe(df: pd.DataFrame):
|
| 24 |
df[RESULTS_COLUMN_NAME] = df.apply(lambda row: [row[SENTIMENT_COLUMN_NAME], row[UNDERSTANDING_COLUMN_NAME], row[PHRASEOLOGY_COLUMN_NAME]], axis=1)
|
|
|
|
| 25 |
# Insert the new column after the 'Average' column
|
| 26 |
cols = list(df.columns)
|
| 27 |
cols.insert(cols.index(AVERAGE_COLUMN_NAME) + 1, cols.pop(cols.index(RESULTS_COLUMN_NAME)))
|
| 28 |
df = df[cols]
|
|
|
|
| 29 |
# Create a color ramp using Seaborn
|
| 30 |
return df
|
| 31 |
|
| 32 |
def styler(df: pd.DataFrame):
|
| 33 |
palette = sns.color_palette("RdYlGn", as_cmap=True)
|
| 34 |
+
# Apply reverse color gradient to the "Params" column
|
| 35 |
+
params_palette = sns.color_palette("RdYlGn_r", as_cmap=True) # Reversed RdYlGn palette
|
| 36 |
+
styled_df = df.style.background_gradient(cmap=palette, subset=[AVERAGE_COLUMN_NAME, SENTIMENT_COLUMN_NAME, PHRASEOLOGY_COLUMN_NAME, UNDERSTANDING_COLUMN_NAME]
|
| 37 |
+
).background_gradient(cmap=params_palette, subset=["Params"]
|
| 38 |
+
).set_properties(**{'text-align': 'center'}, subset=[AVERAGE_COLUMN_NAME, SENTIMENT_COLUMN_NAME, PHRASEOLOGY_COLUMN_NAME, UNDERSTANDING_COLUMN_NAME]
|
| 39 |
+
).format("{:.2f}".center(10), subset=[AVERAGE_COLUMN_NAME, SENTIMENT_COLUMN_NAME, PHRASEOLOGY_COLUMN_NAME, UNDERSTANDING_COLUMN_NAME]
|
| 40 |
+
).format("{:.1f}".center(10), subset=["Params"])
|
| 41 |
return styled_df
|
| 42 |
|
| 43 |
|
|
|
|
| 140 |
|
| 141 |
# Display the styled DataFrame
|
| 142 |
data = load_data('data.json')
|
| 143 |
+
|
| 144 |
+
data['Params'] = data['Params'].str.replace('B', '').astype(float)
|
| 145 |
data = data.sort_values(by=AVERAGE_COLUMN_NAME, ascending=False)
|
| 146 |
styled_df_show = style_dataframe(data)
|
| 147 |
styled_df_show = styler(styled_df_show)
|
| 148 |
|
| 149 |
st.data_editor(styled_df_show, column_config={
|
| 150 |
"Model": st.column_config.TextColumn("Model", help="Model name", width="large"),
|
| 151 |
+
"Params": st.column_config.NumberColumn("Params [B]"),
|
| 152 |
AVERAGE_COLUMN_NAME: st.column_config.NumberColumn(AVERAGE_COLUMN_NAME),
|
| 153 |
RESULTS_COLUMN_NAME: st.column_config.BarChartColumn(
|
| 154 |
"Bar chart of results", help="Summary of the results of each task",
|