Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,44 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
|
|
|
|
3 |
|
4 |
-
# Load
|
5 |
-
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
def detect_phishing(email_text):
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
verdict = "⚠️ This email looks suspicious or potentially phishing."
|
14 |
-
else:
|
15 |
-
verdict = "✅ This email looks legitimate."
|
16 |
-
return f"{verdict}\n\nPrediction: {label}\nConfidence: {confidence:.2f}"
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
interface = gr.Interface(
|
20 |
fn=detect_phishing,
|
21 |
-
inputs=gr.Textbox(lines=15, placeholder="Paste the email
|
22 |
outputs="text",
|
23 |
title="Phishing Email Detector",
|
24 |
-
description="
|
25 |
)
|
26 |
|
27 |
-
# Launch the app
|
28 |
if __name__ == "__main__":
|
29 |
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
|
6 |
+
# Load tokenizer and model
|
7 |
+
model_name = "cybersectony/phishing-email-detection-distilbert_v2.4.1"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
10 |
|
11 |
+
# Define the prediction function
|
12 |
def detect_phishing(email_text):
|
13 |
+
inputs = tokenizer(email_text, return_tensors="pt", truncation=True, max_length=512)
|
14 |
+
with torch.no_grad():
|
15 |
+
outputs = model(**inputs)
|
16 |
+
probs = F.softmax(outputs.logits, dim=-1)[0]
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
labels = [
|
19 |
+
"Legitimate Email",
|
20 |
+
"Phishing URL",
|
21 |
+
"Legitimate URL",
|
22 |
+
"Phishing URL (Alt)"
|
23 |
+
]
|
24 |
+
label_probs = {label: float(prob) for label, prob in zip(labels, probs)}
|
25 |
+
predicted_label = max(label_probs, key=label_probs.get)
|
26 |
+
confidence = label_probs[predicted_label]
|
27 |
+
|
28 |
+
verdict = "⚠️ Suspicious Email Detected." if "Phishing" in predicted_label else "✅ Email Appears Legitimate."
|
29 |
+
result = f"{verdict}\n\nPrediction: {predicted_label}\nConfidence: {confidence:.2%}\n\nDetails:\n"
|
30 |
+
for label, prob in label_probs.items():
|
31 |
+
result += f"{label}: {prob:.2%}\n"
|
32 |
+
return result
|
33 |
+
|
34 |
+
# Create Gradio interface
|
35 |
interface = gr.Interface(
|
36 |
fn=detect_phishing,
|
37 |
+
inputs=gr.Textbox(lines=15, placeholder="Paste the email content here..."),
|
38 |
outputs="text",
|
39 |
title="Phishing Email Detector",
|
40 |
+
description="Detects whether an email is phishing or legitimate using a fine-tuned DistilBERT model."
|
41 |
)
|
42 |
|
|
|
43 |
if __name__ == "__main__":
|
44 |
interface.launch()
|