File size: 12,374 Bytes
73a6a7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# app/core/model_manager.py
import logging
import os
import asyncio
from pathlib import Path
from typing import Callable, Optional, Dict, List

# Imports for downloading specific model types
import nltk
from huggingface_hub import snapshot_download
import spacy.cli

# Internal application imports
from app.core.config import (
    MODELS_DIR,
    NLTK_DATA_DIR,
    SPACY_MODEL_ID,
    SENTENCE_TRANSFORMER_MODEL_ID,
    TONE_MODEL_ID,
    TRANSLATION_MODEL_ID,
    WORDNET_NLTK_ID,
    APP_NAME
)
from app.core.exceptions import ModelNotDownloadedError, ModelDownloadFailedError, ServiceError

logger = logging.getLogger(f"{APP_NAME}.core.model_manager")

# Type alias for progress callback
ProgressCallback = Callable[[str, str, float, Optional[str]], None] # (model_id, status, progress, message)

def _get_hf_model_local_path(model_id: str) -> Path:
    """Helper to get the expected local path for a Hugging Face model."""
    # snapshot_download creates a specific folder structure inside MODELS_DIR/hf_cache
    # For example, for "bert-base-uncased", it might be MODELS_DIR/hf_cache/models--bert-base-uncased
    # The actual model files are inside that.
    # The `transformers` library usually handles this resolution.
    # We just need to check if the directory created by snapshot_download exists.
    # A robust check involves looking inside that directory.
    return MODELS_DIR / "hf_cache" / model_id.replace("/", "--") # Standard HF cache path logic


def check_model_exists(model_id: str, model_type: str) -> bool:
    """
    Checks if a specific model or NLTK data is already downloaded locally.
    """
    if model_type == "huggingface":
        local_path = _get_hf_model_local_path(model_id)
        # Check if the directory exists and contains some files
        return local_path.is_dir() and any(local_path.iterdir())
    elif model_type == "spacy":
        # spaCy models are symlinked or copied into a specific site-packages location
        # The easiest check is to try loading it, or check spacy.util.is_package
        # For our purposes, we'll check if the directory created by `spacy download` exists
        # within our MODELS_DIR, assuming we direct spaCy there.
        # However, `spacy.load` is the most reliable. For pre-check, we'll rely on the
        # existence check in load_spacy_model. This is a simplified check.
        # The actual loading process in app.services.base handles the `is_package` check.
        # For `spacy.cli.download` to work with MODELS_DIR, it often requires setting SPACY_DATA.
        spacy_target_path = MODELS_DIR / model_id
        return spacy_target_path.is_dir() and any(spacy_target_path.iterdir())
    elif model_type == "nltk":
        # NLTK data check
        try:
            return nltk.data.find(f"corpora/{model_id}") is not None
        except LookupError:
            return False
    else:
        logger.warning(f"Unknown model type for check_model_exists: {model_type}")
        return False

# --- Download Functions ---

async def download_hf_model_async(
    model_id: str,
    feature_name: str,
    progress_callback: Optional[ProgressCallback] = None
) -> None:
    """
    Asynchronously downloads a Hugging Face model from the Hub.
    """
    logger.info(f"Initiating download for Hugging Face model '{model_id}' for '{feature_name}'...")
    if check_model_exists(model_id, "huggingface"):
        logger.info(f"Hugging Face model '{model_id}' already exists locally. Skipping download.")
        if progress_callback:
            progress_callback(model_id, "completed", 1.0, "Already downloaded.")
        return

    # Use a thread pool for blocking download operation
    try:
        def _blocking_download():
            # This downloads to MODELS_DIR/hf_cache by default if HF_HOME is set to MODELS_DIR
            # Otherwise, specify cache_dir.
            # For simplicity, we rely on `settings.MODELS_DIR` handling HF_HOME in config.py
            snapshot_download(
                repo_id=model_id,
                cache_dir=str(MODELS_DIR / "hf_cache"), # Explicitly set cache directory
                local_dir_use_symlinks=False, # Use False for better self-contained app
                # The `_` prefix means it's an internal parameter not typically exposed.
                # `progress_callback` in `snapshot_download` is not directly exposed for live updates.
                # We log at beginning and end.
            )
            logger.info(f"Hugging Face model '{model_id}' download complete.")

        if progress_callback:
            progress_callback(model_id, "downloading", 0.05, "Starting download...")

        await asyncio.to_thread(_blocking_download) # Run blocking download in a separate thread

        if progress_callback:
            progress_callback(model_id, "completed", 1.0, "Download successful.")

    except Exception as e:
        logger.error(f"Failed to download Hugging Face model '{model_id}': {e}", exc_info=True)
        if progress_callback:
            progress_callback(model_id, "failed", 0.0, f"Error: {e}")
        raise ModelDownloadFailedError(model_id, feature_name, original_error=str(e))


async def download_spacy_model_async(
    model_id: str,
    feature_name: str,
    progress_callback: Optional[ProgressCallback] = None
) -> None:
    """
    Asynchronously downloads a spaCy model.
    """
    logger.info(f"Initiating download for spaCy model '{model_id}' for '{feature_name}'...")
    # Check if the model package is already installed/available in the spacy data path
    # NOTE: This check might not be sufficient if SPACY_DATA isn't correctly pointing.
    # The `spacy.util.is_package` would be more robust but requires `import spacy` first.
    # For now, we trust `spacy.cli.download` to handle the check or fail gracefully.
    
    # We must ensure SPACY_DATA environment variable is set to MODELS_DIR
    # for spacy.cli.download to put it in our custom path.
    original_spacy_data = os.environ.get("SPACY_DATA")
    try:
        os.environ["SPACY_DATA"] = str(MODELS_DIR)

        if check_model_exists(model_id, "spacy"): # Using our own simplified check
            logger.info(f"SpaCy model '{model_id}' already exists locally. Skipping download.")
            if progress_callback:
                progress_callback(model_id, "completed", 1.0, "Already downloaded.")
            return

        def _blocking_download():
            # spacy.cli.download attempts to download and link/copy
            # It will raise an error if already downloaded if it can't link, etc.
            # We're relying on our check_model_exists before this.
            spacy.cli.download(model_id)
            logger.info(f"SpaCy model '{model_id}' download complete.")

        if progress_callback:
            progress_callback(model_id, "downloading", 0.05, "Starting download...")

        await asyncio.to_thread(_blocking_download)

        if progress_callback:
            progress_callback(model_id, "completed", 1.0, "Download successful.")

    except Exception as e:
        logger.error(f"Failed to download spaCy model '{model_id}': {e}", exc_info=True)
        if progress_callback:
            progress_callback(model_id, "failed", 0.0, f"Error: {e}")
        raise ModelDownloadFailedError(model_id, feature_name, original_error=str(e))
    finally:
        # Restore original SPACY_DATA if it was set
        if original_spacy_data is not None:
            os.environ["SPACY_DATA"] = original_spacy_data
        else:
            if "SPACY_DATA" in os.environ:
                del os.environ["SPACY_DATA"]


async def download_nltk_data_async(
    data_id: str,
    feature_name: str,
    progress_callback: Optional[ProgressCallback] = None
) -> None:
    """
    Asynchronously downloads NLTK data.
    """
    logger.info(f"Initiating download for NLTK data '{data_id}' for '{feature_name}'...")
    # NLTK data path should be set by NLTK_DATA environment variable in config.py
    # `nltk.download` will use this path.

    if check_model_exists(data_id, "nltk"):
        logger.info(f"NLTK data '{data_id}' already exists locally. Skipping download.")
        if progress_callback:
            progress_callback(data_id, "completed", 1.0, "Already downloaded.")
        return

    def _blocking_download():
        # NLTK downloader can show a GUI, so ensure it's not trying to do that
        # `download_dir` should be set by NLTK_DATA env variable.
        # `quiet=True` is important for programmatic download.
        nltk.download(data_id, download_dir=str(NLTK_DATA_DIR), quiet=True)
        logger.info(f"NLTK data '{data_id}' download complete.")

    try:
        if progress_callback:
            progress_callback(data_id, "downloading", 0.05, "Starting download...")

        await asyncio.to_thread(_blocking_download)

        if progress_callback:
            progress_callback(data_id, "completed", 1.0, "Download successful.")

    except Exception as e:
        logger.error(f"Failed to download NLTK data '{data_id}': {e}", exc_info=True)
        if progress_callback:
            progress_callback(data_id, "failed", 0.0, f"Error: {e}")
        raise ModelDownloadFailedError(data_id, feature_name, original_error=str(e))


# --- Comprehensive Model Management ---

def get_all_required_models() -> List[Dict]:
    """
    Returns a list of all models required by the application, with their type and feature.
    """
    return [
        {"id": SPACY_MODEL_ID, "type": "spacy", "feature": "Text Processing (General)"},
        {"id": SENTENCE_TRANSFORMER_MODEL_ID, "type": "huggingface", "feature": "Sentence Embeddings"},
        {"id": TONE_MODEL_ID, "type": "huggingface", "feature": "Tone Classification"},
        {"id": TRANSLATION_MODEL_ID, "type": "huggingface", "feature": "Translation"},
        {"id": WORDNET_NLTK_ID, "type": "nltk", "feature": "Synonym Suggestion"},
        # Add any other models here as your application grows
    ]

async def download_all_required_models(progress_callback: Optional[ProgressCallback] = None) -> Dict[str, str]:
    """
    Attempts to download all required models.
    Returns a dictionary of download statuses.
    """
    required_models = get_all_required_models()
    download_statuses = {}

    for model_info in required_models:
        model_id = model_info["id"]
        model_type = model_info["type"]
        feature_name = model_info["feature"]

        if check_model_exists(model_id, model_type):
            status_message = f"'{model_id}' ({feature_name}) already downloaded."
            logger.info(status_message)
            download_statuses[model_id] = "already_downloaded"
            if progress_callback:
                progress_callback(model_id, "completed", 1.0, status_message)
            continue

        logger.info(f"Attempting to download '{model_id}' ({feature_name})...")
        try:
            if model_type == "huggingface":
                await download_hf_model_async(model_id, feature_name, progress_callback)
            elif model_type == "spacy":
                await download_spacy_model_async(model_id, feature_name, progress_callback)
            elif model_type == "nltk":
                await download_nltk_data_async(model_id, feature_name, progress_callback)
            else:
                raise ValueError(f"Unsupported model type: {model_type}")

            status_message = f"'{model_id}' ({feature_name}) downloaded successfully."
            logger.info(status_message)
            download_statuses[model_id] = "success"

        except ModelDownloadFailedError as e:
            status_message = f"Failed to download '{model_id}' ({feature_name}): {e.original_error}"
            logger.error(status_message)
            download_statuses[model_id] = "failed"
            # The progress_callback is already called within the specific download functions on failure
        except Exception as e:
            status_message = f"An unexpected error occurred while downloading '{model_id}' ({feature_name}): {e}"
            logger.error(status_message, exc_info=True)
            download_statuses[model_id] = "failed"
            if progress_callback:
                progress_callback(model_id, "failed", 0.0, status_message)


    logger.info("Finished attempting to download all required models.")
    return download_statuses