File size: 12,169 Bytes
e020bec
 
 
c26c1e6
 
767c971
 
e020bec
767c971
c26c1e6
 
e020bec
 
c26c1e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e020bec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c26c1e6
 
 
 
 
 
 
 
 
 
 
 
e020bec
c26c1e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e020bec
c26c1e6
 
 
e020bec
c26c1e6
 
 
 
 
 
 
 
 
e020bec
 
 
 
 
 
c26c1e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e020bec
 
 
 
 
 
c26c1e6
e020bec
 
c26c1e6
e020bec
c26c1e6
 
e020bec
 
 
c26c1e6
 
 
e020bec
 
 
c26c1e6
e020bec
c26c1e6
 
 
 
e020bec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c26c1e6
e020bec
 
 
 
 
 
 
 
 
 
 
 
 
 
c26c1e6
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
from datetime import datetime
from time import sleep
from typing import Dict, List, Tuple
from openai import OpenAI
import gradio as gr
import pandas as pd
import numpy as np
import dotenv
import json
import os

dotenv.load_dotenv()

openai = OpenAI(
    base_url="https://openrouter.ai/api/v1", api_key=os.environ.get("API_KEY")
)

MBTI_TYPES = [
    "ISTJ",
    "ISFJ",
    "INFJ",
    "INTJ",
    "ISTP",
    "ISFP",
    "INFP",
    "INTP",
    "ESTP",
    "ESFP",
    "ENFP",
    "ENTP",
    "ESTJ",
    "ESFJ",
    "ENFJ",
    "ENTJ",
]


class User:
    def __init__(self, username: str, name: str):
        self.username = username
        self.name = name
        self.scores_history: List[Dict] = []
        self.recommendations_history: List[Dict] = []

    def add_scores(self, scores: "UTBKScores", mbti: str):
        score_entry = {
            "timestamp": datetime.now().isoformat(),
            "scores": scores.__dict__,
            "mbti": mbti,
        }
        self.scores_history.append(score_entry)

    def add_recommendations(self, recommendations: pd.DataFrame):
        rec_entry = {
            "timestamp": datetime.now().isoformat(),
            "recommendations": recommendations.to_dict("records"),
        }
        self.recommendations_history.append(rec_entry)


class UserManager:
    def __init__(self):
        self.users: Dict[str, User] = {}

    def get_or_create_user(self, oauth_profile: gr.OAuthProfile) -> User:
        if oauth_profile.username not in self.users:
            self.users[oauth_profile.username] = User(
                username=oauth_profile.username, name=oauth_profile.name
            )
        return self.users[oauth_profile.username]

    def save_user_interaction(
        self,
        oauth_profile: gr.OAuthProfile,
        scores: "UTBKScores",
        mbti: str,
        recommendations: pd.DataFrame,
    ):
        user = self.get_or_create_user(oauth_profile)
        user.add_scores(scores, mbti)
        user.add_recommendations(recommendations)


class UTBKScores:
    def __init__(self, scores_dict: Dict):
        self.penalaran_umum = scores_dict["penalaran_umum"]
        self.pengetahuan_umum = scores_dict["pengetahuan_umum"]
        self.pemahaman_bacaan = scores_dict["pemahaman_bacaan"]
        self.pengetahuan_kuantitatif = scores_dict["pengetahuan_kuantitatif"]
        self.literasi_indonesia = scores_dict["literasi_indonesia"]
        self.literasi_inggris = scores_dict["literasi_inggris"]
        self.penalaran_matematika = scores_dict["penalaran_matematika"]


class UniversityRecommender:
    def get_initial_recommendations(self, scores: UTBKScores, mbti: str) -> Dict:
        prompt = f"""Based on the following UTBK scores and MBTI personality type, suggest 10 suitable study programs 
        and Indonesian universities. Return the response in the following JSON format:
        {{
            "recommendations": [
                {{
                    "program": "program_name",
                    "university": "university_name",
                    "acceptance_rate": "estimated_acceptance_rate_as_decimal",
                    "required_scores": {{
                        "penalaran_umum": minimum_score,
                        ... (other scores)
                    }},
                    "ideal_mbti_types": ["TYPE1", "TYPE2", "TYPE3"],
                    "program_description": "brief_description"
                }}
            ]
        }}

        UTBK Scores:
        {scores.__dict__}
        MBTI: {mbti}

        RETURN ***JUST*** THE JSON. DO NOT WRAP IT IN A CODE BLOCK. PROVIDE THE JSON AS-IS, NOTHING ELSE.
        """

        response = openai.chat.completions.create(
            model="meta-llama/llama-4-scout",
            messages=[
                {
                    "role": "system",
                    "content": "You are a knowledgeable educational consultant who specializes in Indonesian universities.",
                },
                {"role": "user", "content": prompt},
            ],
        )

        try:
            return json.loads(response.choices[0].message.content)
        except json.JSONDecodeError:
            print("Failed to get a pred (malformation), retrying...")
            sleep(0.1)
            return self.get_initial_recommendations(scores, mbti)

    def calculate_compatibility(
        self, recommendation: Dict, scores: UTBKScores, mbti: str
    ) -> float:
        score_diffs = []
        for score_type, required_score in recommendation["required_scores"].items():
            actual_score = getattr(scores, score_type)
            score_diffs.append(max(0, (actual_score - required_score) / 100))
        score_compatibility = np.mean(score_diffs)

        mbti_compatibility = 1.0 if mbti in recommendation["ideal_mbti_types"] else 0.5
        acceptance_rate = float(recommendation["acceptance_rate"])

        final_compatibility = (
            0.4 * score_compatibility + 0.3 * mbti_compatibility + 0.3 * acceptance_rate
        )

        return final_compatibility

    def process_recommendations(
        self, raw_recommendations: Dict, scores: UTBKScores, mbti: str
    ) -> pd.DataFrame:
        results = []
        for rec in raw_recommendations["recommendations"]:
            compatibility = self.calculate_compatibility(rec, scores, mbti)
            results.append(
                {
                    "Program": rec["program"],
                    "University": rec["university"],
                    "Compatibility": f"{compatibility*100:.1f}%",
                    "Acceptance Rate": f"{float(rec['acceptance_rate'])*100:.1f}%",
                    "Description": rec["program_description"],
                }
            )

        return pd.DataFrame(results).sort_values("Compatibility", ascending=False)


def create_input_interface():
    with gr.Row():
        with gr.Column():
            gr.Markdown("## UTBK Scores")
            scores = {
                "penalaran_umum": gr.Slider(0, 100, value=50, label="Penalaran Umum"),
                "pengetahuan_umum": gr.Slider(
                    0, 100, value=50, label="Pengetahuan Umum"
                ),
                "pemahaman_bacaan": gr.Slider(
                    0, 100, value=50, label="Pemahaman Bacaan"
                ),
                "pengetahuan_kuantitatif": gr.Slider(
                    0, 100, value=50, label="Pengetahuan Kuantitatif"
                ),
                "literasi_indonesia": gr.Slider(
                    0, 100, value=50, label="Literasi Indonesia"
                ),
                "literasi_inggris": gr.Slider(
                    0, 100, value=50, label="Literasi Inggris"
                ),
                "penalaran_matematika": gr.Slider(
                    0, 100, value=50, label="Penalaran Matematika"
                ),
            }

        with gr.Column():
            gr.Markdown("## Personality")
            mbti = gr.Dropdown(choices=MBTI_TYPES, label="MBTI Type")

    return scores, mbti


def create_output_interface():
    with gr.Row():
        results_df = gr.Dataframe(
            headers=[
                "Program",
                "University",
                "Compatibility",
                "Acceptance Rate",
                "Description",
            ],
            label="Recommended Programs",
        )
    return results_df


def process_input(*args):
    recommender = UniversityRecommender()

    scores_dict = {
        "penalaran_umum": args[0],
        "pengetahuan_umum": args[1],
        "pemahaman_bacaan": args[2],
        "pengetahuan_kuantitatif": args[3],
        "literasi_indonesia": args[4],
        "literasi_inggris": args[5],
        "penalaran_matematika": args[6],
    }
    mbti = args[7]

    scores = UTBKScores(scores_dict)
    raw_recommendations = recommender.get_initial_recommendations(scores, mbti)
    return recommender.process_recommendations(raw_recommendations, scores, mbti)


def create_recommendations_from_dict(
    self, recommendations_dict: List[Dict], oauth_profile: gr.OAuthProfile | None
) -> pd.DataFrame:
    return pd.DataFrame(recommendations_dict)


def create_interface():
    user_manager = UserManager()

    with gr.Blocks(title="University Program Recommender") as interface:
        gr.LoginButton()
        gr.Markdown("# Indonesian University Program Recommender")

        # User info section
        user_info = gr.Markdown()

        # Input Section
        scores, mbti = create_input_interface()

        # Add Load Last Recommendation button
        load_last_btn = gr.Button("Load Last Recommendation")

        # Submit Button
        submit_btn = gr.Button("Get New Recommendations")

        # Output Section
        results_df = create_output_interface()

        # History Tab
        with gr.Tab("History"):
            history_df = gr.Dataframe(
                headers=["Timestamp", "MBTI", "Scores", "Recommendations"],
                label="Your Previous Recommendations",
            )

        def load_last_recommendation(
            oauth_profile: gr.OAuthProfile | None,
        ) -> pd.DataFrame:
            if oauth_profile is None:
                return pd.DataFrame()

            user = user_manager.get_or_create_user(oauth_profile)
            if user.recommendations_history:
                last_recommendation = user.recommendations_history[-1]
                return pd.DataFrame(last_recommendation["recommendations"])
            return pd.DataFrame()

        def process_with_user(oauth_profile: gr.OAuthProfile | None, *args):
            if oauth_profile is None:
                return pd.DataFrame()

            results = process_input(*args)

            scores_dict = {
                "penalaran_umum": args[0],
                "pengetahuan_umum": args[1],
                "pemahaman_bacaan": args[2],
                "pengetahuan_kuantitatif": args[3],
                "literasi_indonesia": args[4],
                "literasi_inggris": args[5],
                "penalaran_matematika": args[6],
            }
            scores = UTBKScores(scores_dict)
            mbti = args[7]

            user_manager.save_user_interaction(oauth_profile, scores, mbti, results)

            return results

        def update_user_info(
            oauth_profile: gr.OAuthProfile | None,
        ) -> Tuple[str, pd.DataFrame]:
            if oauth_profile is None:
                return (
                    "Not logged in. Please login to use the recommender.",
                    pd.DataFrame(),
                )

            # Load last recommendation on login
            last_rec = load_last_recommendation(oauth_profile)
            return (
                f"Logged in as: {oauth_profile.username} ({oauth_profile.name})",
                last_rec,
            )

        def show_history(oauth_profile: gr.OAuthProfile | None) -> pd.DataFrame:
            if oauth_profile is None:
                return pd.DataFrame()

            user = user_manager.get_or_create_user(oauth_profile)
            history_data = []

            for score_entry, rec_entry in zip(
                user.scores_history, user.recommendations_history
            ):
                history_data.append(
                    {
                        "Timestamp": score_entry["timestamp"],
                        "MBTI": score_entry["mbti"],
                        "Scores": str(score_entry["scores"]),
                        "Recommendations": str(rec_entry["recommendations"]),
                    }
                )

            return pd.DataFrame(history_data)

        input_components = list(scores.values()) + [mbti]

        submit_btn.click(
            fn=process_with_user,
            inputs=input_components,
            outputs=[results_df],
        )

        load_last_btn.click(
            fn=load_last_recommendation,
            outputs=[results_df],
        )

        interface.load(update_user_info, outputs=[user_info, results_df])
        interface.load(show_history, outputs=[history_df])

    return interface


if __name__ == "__main__":
    interface = create_interface()
    interface.launch()