sreelakshmimukkizhi commited on
Commit
72750b5
·
verified ·
1 Parent(s): c964a7e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -55
app.py CHANGED
@@ -1,64 +1,26 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
3
+ import torch
4
 
5
+ # Load fine-tuned TinyLLaMA model from Hugging Face
6
+ model_name = "your-username/tinyllama-qlora-support-bot" # 🔁 Replace with your actual HF repo name
 
 
7
 
8
+ # Use FP16 if supported, fallback to CPU
9
+ device = "cuda" if torch.cuda.is_available() else "cpu"
10
 
11
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
12
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16 if device=="cuda" else torch.float32).to(device)
 
 
 
 
 
 
 
13
 
14
+ # Pipeline for response generation
15
+ generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if device=="cuda" else -1)
 
 
 
16
 
17
+ def chatbot(message, history=[]):
18
+ prompt = f"### Instruction:\n{message}\n\n### Response:\n"
19
+ output = generator(prompt, max_new_tokens=256, do_sample=True, temperature=0.7)
20
+ response = output[0]["generated_text"].split("### Response:\n")[-1].strip()
21
+ return response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
+ interface = gr.ChatInterface(fn=chatbot, title="🦙 LLaMA Support Chatbot", theme="soft")
24
 
25
  if __name__ == "__main__":
26
+ interface.launch()