Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,26 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
3 |
+
import torch
|
4 |
|
5 |
+
# Load fine-tuned TinyLLaMA model from Hugging Face
|
6 |
+
model_name = "your-username/tinyllama-qlora-support-bot" # 🔁 Replace with your actual HF repo name
|
|
|
|
|
7 |
|
8 |
+
# Use FP16 if supported, fallback to CPU
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16 if device=="cuda" else torch.float32).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# Pipeline for response generation
|
15 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if device=="cuda" else -1)
|
|
|
|
|
|
|
16 |
|
17 |
+
def chatbot(message, history=[]):
|
18 |
+
prompt = f"### Instruction:\n{message}\n\n### Response:\n"
|
19 |
+
output = generator(prompt, max_new_tokens=256, do_sample=True, temperature=0.7)
|
20 |
+
response = output[0]["generated_text"].split("### Response:\n")[-1].strip()
|
21 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
interface = gr.ChatInterface(fn=chatbot, title="🦙 LLaMA Support Chatbot", theme="soft")
|
24 |
|
25 |
if __name__ == "__main__":
|
26 |
+
interface.launch()
|