OCR_app / app.py
srimanth-d's picture
Upload app.py
bcb8309 verified
raw
history blame
4.15 kB
import re
import streamlit as st
from transformers import AutoModel, AutoTokenizer
import io
from PIL import Image
@st.cache_resource
def load_model():
tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True)
model = AutoModel.from_pretrained("srimanth-d/GOT_CPU", trust_remote_code=True, low_cpu_mem_usage=True, use_safetensors=True, pad_token_id=151643)
model.eval()
return model, tokenizer
def handle_error(error_message):
#logging.error(error_message)
st.error(f"An error occurred: {error_message}")
def extract_text(image_bytes, ocr_type):
try:
model, tokenizer = load_model()
image = Image.open(io.BytesIO(image_bytes))
image.save("temp_image.png", format="PNG")
res = model.chat(tokenizer, "temp_image.png", ocr_type=ocr_type)
return res
except Exception as e:
handle_error(f"Error during OCR extraction: {str(e)}")
return None
def search_keyword(extracted_text, keyword):
keyword = re.escape(keyword)
regex_pattern = rf'\b({keyword})\b'
occurrences = len(re.findall(regex_pattern, extracted_text, flags=re.IGNORECASE))
highlighted_text = re.sub(regex_pattern, r"<span style='color:red'><b>\1</b></span>", extracted_text, flags=re.IGNORECASE)
return highlighted_text, occurrences
@st.cache_data
def cache_image_ocr(image_bytes, ocr_type):
return extract_text(image_bytes, ocr_type)
def app():
st.set_page_config(page_title="OCR Tool", layout="wide", page_icon=":chart_with_upwards_trend:")
st.header("Optical Character Recognition for English and Hindi Texts")
st.write("Upload an image below for OCR:")
if 'extracted_text' not in st.session_state:
st.session_state.extracted_text = None
col1, col2 = st.columns([1, 1])
with col1:
st.subheader("Upload and OCR Extraction")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"], accept_multiple_files=False)
# Add OCR type selection dropdown
ocr_type = st.selectbox("Select OCR Type:", ["ocr", "format"])
if uploaded_file is not None:
st.image(uploaded_file, caption='Uploaded Image', use_column_width=True)
image_bytes = uploaded_file.read()
if st.session_state.extracted_text is None:
with st.spinner("Extracting the text..."):
extracted_text = cache_image_ocr(image_bytes, ocr_type)
if extracted_text:
st.success("Text extraction completed!", icon="πŸŽ‰")
st.session_state.extracted_text = extracted_text
st.write("Extracted Text:")
st.write(extracted_text)
else:
st.error("Failed to extract text. Please try with a different image.")
else:
st.write("Extracted Text:")
st.write(st.session_state.extracted_text)
else:
st.session_state.extracted_text = None
st.info("Please upload an image file to proceed.")
with col2:
st.subheader("Keyword Search")
if st.session_state.extracted_text:
keyword = st.text_input("Enter keyword to search")
if keyword:
with st.spinner(f"Searching for '{keyword}'..."):
highlighted_text, occurrences = search_keyword(st.session_state.extracted_text, keyword)
if occurrences > 0:
st.success(f"Found {occurrences} occurrences of the keyword '{keyword}'!")
st.markdown(highlighted_text, unsafe_allow_html=True)
else:
st.warning(f"No occurrences of the keyword '{keyword}' were found.")
else:
st.info("Please upload an image and extract text first.")
def main():
try:
app()
except Exception as main_error:
handle_error(f"Unexpected error in the main function: {str(main_error)}")
if __name__ == "__main__":
main()