import streamlit as st import joblib,torch import time device = 'cuda' if torch.cuda.is_available() else 'cpu' loaded_tokenizer = joblib.load("finalized_tokenizer.sav") loaded_model = joblib.load("finalized_model.sav") st.title('Text Summarization using Pegasus') txt = st.text_area('Enter Text to summarize here', '') if st.button('Summarize'): with st.spinner('Summarizing..'): batch = loaded_tokenizer(txt, truncation=True, padding='longest', return_tensors="pt").to(device) translated = loaded_model.generate(**batch) tgt_text = loaded_tokenizer.batch_decode(translated, skip_special_tokens=True) st.success('Summarized Text') st.subheader(tgt_text[0])