Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,39 @@
|
|
1 |
from fastapi import FastAPI, File, UploadFile
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
-
from pydantic import BaseModel
|
4 |
from transformers import pipeline
|
5 |
import uvicorn
|
6 |
import tempfile
|
|
|
7 |
|
8 |
-
# Initialize FastAPI
|
9 |
app = FastAPI()
|
10 |
|
11 |
-
#
|
12 |
app.add_middleware(
|
13 |
CORSMiddleware,
|
14 |
allow_origins=["*"],
|
15 |
-
allow_credentials=True,
|
16 |
allow_methods=["*"],
|
17 |
allow_headers=["*"],
|
18 |
)
|
19 |
|
20 |
-
# Load
|
21 |
-
|
22 |
-
"audio-classification",
|
23 |
-
model="ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
|
24 |
-
)
|
25 |
-
|
26 |
-
# Health check route
|
27 |
-
@app.get("/")
|
28 |
-
def read_root():
|
29 |
-
return {"message": "HF Space is live!"}
|
30 |
|
31 |
-
# Predict route
|
32 |
@app.post("/predict")
|
33 |
-
async def
|
34 |
try:
|
35 |
-
# Save
|
36 |
-
with tempfile.NamedTemporaryFile(delete=False) as tmp:
|
37 |
tmp.write(await file.read())
|
38 |
tmp_path = tmp.name
|
39 |
|
40 |
-
#
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
return {"emotion": top_emotion}
|
45 |
|
|
|
1 |
from fastapi import FastAPI, File, UploadFile
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
3 |
from transformers import pipeline
|
4 |
import uvicorn
|
5 |
import tempfile
|
6 |
+
import torchaudio
|
7 |
|
|
|
8 |
app = FastAPI()
|
9 |
|
10 |
+
# Allow CORS
|
11 |
app.add_middleware(
|
12 |
CORSMiddleware,
|
13 |
allow_origins=["*"],
|
|
|
14 |
allow_methods=["*"],
|
15 |
allow_headers=["*"],
|
16 |
)
|
17 |
|
18 |
+
# Load model
|
19 |
+
pipe = pipeline("audio-classification", model="superb/wav2vec2-base-superb-er")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
|
|
21 |
@app.post("/predict")
|
22 |
+
async def predict(file: UploadFile = File(...)):
|
23 |
try:
|
24 |
+
# Save uploaded file to a temp file
|
25 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
|
26 |
tmp.write(await file.read())
|
27 |
tmp_path = tmp.name
|
28 |
|
29 |
+
# Load and preprocess audio
|
30 |
+
waveform, sample_rate = torchaudio.load(tmp_path)
|
31 |
+
|
32 |
+
# Get prediction
|
33 |
+
result = pipe(tmp_path)
|
34 |
+
|
35 |
+
# Get top prediction label
|
36 |
+
top_emotion = result[0]["label"].lower()
|
37 |
|
38 |
return {"emotion": top_emotion}
|
39 |
|