Spaces:
Runtime error
Runtime error
File size: 6,001 Bytes
923b896 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
def load_and_preprocess_data(file_path):
# Read Excel file, skipping the first 2 rows
df = pd.read_excel(file_path, skiprows=2)
# Extract data for each configuration using column letters
milvus_llama = df.iloc[:, 2:8].copy() # Columns C to H
milvus_llama.columns = ['RMSE_Context_Rel', 'RMSE_Context_Util', 'AUCROC',
'Retrieval_Time', 'Context_Relevance', 'Context_Utilization']
weaviate_mistral = df.iloc[:, 9:16].copy() # Columns J to P
weaviate_mistral.columns = ['Retrieval_Time', 'Context_Rel', 'Util',
'Adherence', 'RMSE_Context_Rel', 'RMSE_Context_Util', 'AUCROC']
milvus_mistral = df.iloc[:, 17:24].copy() # Columns R to X
milvus_mistral.columns = ['Retrieval_Time', 'Context_Rel', 'Util',
'Adherence', 'RMSE_Context_Rel', 'RMSE_Context_Util', 'AUCROC']
# Replace 'na' with NaN and convert to float
milvus_llama = milvus_llama.replace('na', np.nan).astype(float)
weaviate_mistral = weaviate_mistral.replace('na', np.nan).astype(float)
milvus_mistral = milvus_mistral.replace('na', np.nan).astype(float)
return milvus_llama, weaviate_mistral, milvus_mistral
def create_performance_comparison(milvus_llama, weaviate_mistral, milvus_mistral):
plt.style.use('default') # Using default style instead of seaborn
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
# Retrieval Time Comparison
data = {
'Milvus + LLaMA': milvus_llama['Retrieval_Time'].dropna(),
'Weaviate + Mistral': weaviate_mistral['Retrieval_Time'].dropna(),
'Milvus + Mistral': milvus_mistral['Retrieval_Time'].dropna()
}
sns.boxplot(data=pd.DataFrame(data), ax=axes[0,0])
axes[0,0].set_title('Retrieval Time Comparison')
axes[0,0].set_ylabel('Time (seconds)')
axes[0,0].tick_params(axis='x', rotation=45)
# RMSE Context Relevance Comparison
data = {
'Milvus + LLaMA': milvus_llama['RMSE_Context_Rel'].dropna(),
'Weaviate + Mistral': weaviate_mistral['RMSE_Context_Rel'].dropna(),
'Milvus + Mistral': milvus_mistral['RMSE_Context_Rel'].dropna()
}
sns.boxplot(data=pd.DataFrame(data), ax=axes[0,1])
axes[0,1].set_title('RMSE Context Relevance')
axes[0,1].tick_params(axis='x', rotation=45)
# RMSE Context Utilization Comparison
data = {
'Milvus + LLaMA': milvus_llama['RMSE_Context_Util'].dropna(),
'Weaviate + Mistral': weaviate_mistral['RMSE_Context_Util'].dropna(),
'Milvus + Mistral': milvus_mistral['RMSE_Context_Util'].dropna()
}
sns.boxplot(data=pd.DataFrame(data), ax=axes[1,0])
axes[1,0].set_title('RMSE Context Utilization')
axes[1,0].tick_params(axis='x', rotation=45)
# AUROC Comparison
data = {
'Milvus + LLaMA': milvus_llama['AUCROC'].dropna(),
'Weaviate + Mistral': weaviate_mistral['AUCROC'].dropna(),
'Milvus + Mistral': milvus_mistral['AUCROC'].dropna()
}
sns.boxplot(data=pd.DataFrame(data), ax=axes[1,1])
axes[1,1].set_title('AUROC Scores')
axes[1,1].tick_params(axis='x', rotation=45)
plt.tight_layout()
plt.savefig('report/visualizations/performance_comparison.png', dpi=300, bbox_inches='tight')
plt.close()
def create_correlation_heatmaps(milvus_llama, weaviate_mistral, milvus_mistral):
plt.figure(figsize=(20, 6))
# Create correlation heatmaps for each configuration
plt.subplot(1, 3, 1)
sns.heatmap(milvus_llama.corr(), annot=True, cmap='coolwarm', fmt='.2f', square=True)
plt.title('Milvus + LLaMA Correlations')
plt.subplot(1, 3, 2)
sns.heatmap(weaviate_mistral.corr(), annot=True, cmap='coolwarm', fmt='.2f', square=True)
plt.title('Weaviate + Mistral Correlations')
plt.subplot(1, 3, 3)
sns.heatmap(milvus_mistral.corr(), annot=True, cmap='coolwarm', fmt='.2f', square=True)
plt.title('Milvus + Mistral Correlations')
plt.tight_layout()
plt.savefig('report/visualizations/correlation_heatmaps.png', dpi=300, bbox_inches='tight')
plt.close()
def create_violin_plots(milvus_llama, weaviate_mistral, milvus_mistral):
metrics = ['RMSE_Context_Rel', 'RMSE_Context_Util', 'AUCROC']
plt.figure(figsize=(15, 5))
for i, metric in enumerate(metrics, 1):
plt.subplot(1, 3, i)
data = {
'Milvus + LLaMA': milvus_llama[metric].dropna(),
'Weaviate + Mistral': weaviate_mistral[metric].dropna(),
'Milvus + Mistral': milvus_mistral[metric].dropna()
}
sns.violinplot(data=pd.DataFrame(data))
plt.title(f'{metric} Distribution')
plt.xticks(rotation=45)
plt.tight_layout()
plt.savefig('report/visualizations/metric_distributions.png', dpi=300, bbox_inches='tight')
plt.close()
def print_summary_statistics(milvus_llama, weaviate_mistral, milvus_mistral):
print("\nSummary Statistics:")
print("\nMilvus + LLaMA:")
print(milvus_llama.describe().round(4))
print("\nWeaviate + Mistral:")
print(weaviate_mistral.describe().round(4))
print("\nMilvus + Mistral:")
print(milvus_mistral.describe().round(4))
def main():
# Create visualizations directory
import os
os.makedirs("report/visualizations", exist_ok=True)
# Load data
milvus_llama, weaviate_mistral, milvus_mistral = load_and_preprocess_data("report/Scores for RAGBenchCapstone.xlsx")
# Create visualizations
create_performance_comparison(milvus_llama, weaviate_mistral, milvus_mistral)
create_correlation_heatmaps(milvus_llama, weaviate_mistral, milvus_mistral)
create_violin_plots(milvus_llama, weaviate_mistral, milvus_mistral)
# Print statistics
print_summary_statistics(milvus_llama, weaviate_mistral, milvus_mistral)
if __name__ == "__main__":
main() |