File size: 6,001 Bytes
923b896
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

def load_and_preprocess_data(file_path):
    # Read Excel file, skipping the first 2 rows
    df = pd.read_excel(file_path, skiprows=2)
    
    # Extract data for each configuration using column letters
    milvus_llama = df.iloc[:, 2:8].copy()  # Columns C to H
    milvus_llama.columns = ['RMSE_Context_Rel', 'RMSE_Context_Util', 'AUCROC', 
                           'Retrieval_Time', 'Context_Relevance', 'Context_Utilization']
    
    weaviate_mistral = df.iloc[:, 9:16].copy()  # Columns J to P
    weaviate_mistral.columns = ['Retrieval_Time', 'Context_Rel', 'Util', 
                               'Adherence', 'RMSE_Context_Rel', 'RMSE_Context_Util', 'AUCROC']
    
    milvus_mistral = df.iloc[:, 17:24].copy()  # Columns R to X
    milvus_mistral.columns = ['Retrieval_Time', 'Context_Rel', 'Util', 
                             'Adherence', 'RMSE_Context_Rel', 'RMSE_Context_Util', 'AUCROC']
    
    # Replace 'na' with NaN and convert to float
    milvus_llama = milvus_llama.replace('na', np.nan).astype(float)
    weaviate_mistral = weaviate_mistral.replace('na', np.nan).astype(float)
    milvus_mistral = milvus_mistral.replace('na', np.nan).astype(float)
    
    return milvus_llama, weaviate_mistral, milvus_mistral

def create_performance_comparison(milvus_llama, weaviate_mistral, milvus_mistral):
    plt.style.use('default')  # Using default style instead of seaborn
    fig, axes = plt.subplots(2, 2, figsize=(15, 12))
    
    # Retrieval Time Comparison
    data = {
        'Milvus + LLaMA': milvus_llama['Retrieval_Time'].dropna(),
        'Weaviate + Mistral': weaviate_mistral['Retrieval_Time'].dropna(),
        'Milvus + Mistral': milvus_mistral['Retrieval_Time'].dropna()
    }
    sns.boxplot(data=pd.DataFrame(data), ax=axes[0,0])
    axes[0,0].set_title('Retrieval Time Comparison')
    axes[0,0].set_ylabel('Time (seconds)')
    axes[0,0].tick_params(axis='x', rotation=45)
    
    # RMSE Context Relevance Comparison
    data = {
        'Milvus + LLaMA': milvus_llama['RMSE_Context_Rel'].dropna(),
        'Weaviate + Mistral': weaviate_mistral['RMSE_Context_Rel'].dropna(),
        'Milvus + Mistral': milvus_mistral['RMSE_Context_Rel'].dropna()
    }
    sns.boxplot(data=pd.DataFrame(data), ax=axes[0,1])
    axes[0,1].set_title('RMSE Context Relevance')
    axes[0,1].tick_params(axis='x', rotation=45)
    
    # RMSE Context Utilization Comparison
    data = {
        'Milvus + LLaMA': milvus_llama['RMSE_Context_Util'].dropna(),
        'Weaviate + Mistral': weaviate_mistral['RMSE_Context_Util'].dropna(),
        'Milvus + Mistral': milvus_mistral['RMSE_Context_Util'].dropna()
    }
    sns.boxplot(data=pd.DataFrame(data), ax=axes[1,0])
    axes[1,0].set_title('RMSE Context Utilization')
    axes[1,0].tick_params(axis='x', rotation=45)
    
    # AUROC Comparison
    data = {
        'Milvus + LLaMA': milvus_llama['AUCROC'].dropna(),
        'Weaviate + Mistral': weaviate_mistral['AUCROC'].dropna(),
        'Milvus + Mistral': milvus_mistral['AUCROC'].dropna()
    }
    sns.boxplot(data=pd.DataFrame(data), ax=axes[1,1])
    axes[1,1].set_title('AUROC Scores')
    axes[1,1].tick_params(axis='x', rotation=45)
    
    plt.tight_layout()
    plt.savefig('report/visualizations/performance_comparison.png', dpi=300, bbox_inches='tight')
    plt.close()

def create_correlation_heatmaps(milvus_llama, weaviate_mistral, milvus_mistral):
    plt.figure(figsize=(20, 6))
    
    # Create correlation heatmaps for each configuration
    plt.subplot(1, 3, 1)
    sns.heatmap(milvus_llama.corr(), annot=True, cmap='coolwarm', fmt='.2f', square=True)
    plt.title('Milvus + LLaMA Correlations')
    
    plt.subplot(1, 3, 2)
    sns.heatmap(weaviate_mistral.corr(), annot=True, cmap='coolwarm', fmt='.2f', square=True)
    plt.title('Weaviate + Mistral Correlations')
    
    plt.subplot(1, 3, 3)
    sns.heatmap(milvus_mistral.corr(), annot=True, cmap='coolwarm', fmt='.2f', square=True)
    plt.title('Milvus + Mistral Correlations')
    
    plt.tight_layout()
    plt.savefig('report/visualizations/correlation_heatmaps.png', dpi=300, bbox_inches='tight')
    plt.close()

def create_violin_plots(milvus_llama, weaviate_mistral, milvus_mistral):
    metrics = ['RMSE_Context_Rel', 'RMSE_Context_Util', 'AUCROC']
    
    plt.figure(figsize=(15, 5))
    for i, metric in enumerate(metrics, 1):
        plt.subplot(1, 3, i)
        data = {
            'Milvus + LLaMA': milvus_llama[metric].dropna(),
            'Weaviate + Mistral': weaviate_mistral[metric].dropna(),
            'Milvus + Mistral': milvus_mistral[metric].dropna()
        }
        sns.violinplot(data=pd.DataFrame(data))
        plt.title(f'{metric} Distribution')
        plt.xticks(rotation=45)
    
    plt.tight_layout()
    plt.savefig('report/visualizations/metric_distributions.png', dpi=300, bbox_inches='tight')
    plt.close()

def print_summary_statistics(milvus_llama, weaviate_mistral, milvus_mistral):
    print("\nSummary Statistics:")
    
    print("\nMilvus + LLaMA:")
    print(milvus_llama.describe().round(4))
    
    print("\nWeaviate + Mistral:")
    print(weaviate_mistral.describe().round(4))
    
    print("\nMilvus + Mistral:")
    print(milvus_mistral.describe().round(4))

def main():
    # Create visualizations directory
    import os
    os.makedirs("report/visualizations", exist_ok=True)
    
    # Load data
    milvus_llama, weaviate_mistral, milvus_mistral = load_and_preprocess_data("report/Scores for RAGBenchCapstone.xlsx")
    
    # Create visualizations
    create_performance_comparison(milvus_llama, weaviate_mistral, milvus_mistral)
    create_correlation_heatmaps(milvus_llama, weaviate_mistral, milvus_mistral)
    create_violin_plots(milvus_llama, weaviate_mistral, milvus_mistral)
    
    # Print statistics
    print_summary_statistics(milvus_llama, weaviate_mistral, milvus_mistral)

if __name__ == "__main__":
    main()