fh46jderf / app.py
ssboost's picture
Update app.py
f34d9b8 verified
raw
history blame
55.7 kB
import sys
import base64
import io
import logging
import tempfile
import traceback
import requests
import json
from PIL import Image
import gradio as gr
from openai import OpenAI
import replicate
from google import genai
from google.genai import types
# ๋กœ๊น… ์„ค์ •
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("app.log"),
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger("image-enhancer-app")
# API ํด๋ผ์ด์–ธํŠธ ์ดˆ๊ธฐํ™” (์•ˆ์ „ํ•˜๊ฒŒ)
openai_client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY", ""))
# Gemini ํด๋ผ์ด์–ธํŠธ ์ดˆ๊ธฐํ™” - API ํ‚ค๊ฐ€ ์žˆ์„ ๋•Œ๋งŒ
gemini_api_key = os.environ.get("GEMINI_API_KEY")
if gemini_api_key and gemini_api_key.strip():
try:
gemini_client = genai.Client(api_key=gemini_api_key)
logger.info("Gemini client initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize Gemini client: {e}")
gemini_client = None
else:
logger.warning("GEMINI_API_KEY not found or empty, Gemini client not initialized")
gemini_client = None
# ์„ค์ •๊ฐ’๋“ค์„ ํ™˜๊ฒฝ๋ณ€์ˆ˜์—์„œ ๋กœ๋“œํ•˜๋Š” ํ•จ์ˆ˜๋“ค
def get_app_password():
"""ํ™˜๊ฒฝ๋ณ€์ˆ˜์—์„œ ์•ฑ ๋น„๋ฐ€๋ฒˆํ˜ธ๋ฅผ ๊ฐ€์ ธ์˜ต๋‹ˆ๋‹ค."""
password = os.environ.get("APP_PASSWORD")
if password:
logger.info("App password loaded from environment variable")
return password
else:
logger.warning("APP_PASSWORD environment variable not found, using default password")
return "1089" # ๊ธฐ๋ณธ ๋น„๋ฐ€๋ฒˆํ˜ธ
# ๋ฐฐ๊ฒฝ ๋ฐ์ดํ„ฐ๋ฅผ ํ™˜๊ฒฝ๋ณ€์ˆ˜์—์„œ ๋กœ๋“œํ•˜๋Š” ํ•จ์ˆ˜
def load_backgrounds_from_env():
"""ํ™˜๊ฒฝ๋ณ€์ˆ˜์—์„œ ๋ฐฐ๊ฒฝ ๋ฐ์ดํ„ฐ๋ฅผ ๋กœ๋“œํ•ฉ๋‹ˆ๋‹ค."""
try:
# ํ™˜๊ฒฝ๋ณ€์ˆ˜์—์„œ JSON ๋ฌธ์ž์—ด๋กœ ์ €์žฅ๋œ ๋ฐฐ๊ฒฝ ๋ฐ์ดํ„ฐ ๋กœ๋“œ
backgrounds_data = os.environ.get("BACKGROUNDS_DATA")
if backgrounds_data:
logger.info("Loading backgrounds data from environment variable")
return json.loads(backgrounds_data)
else:
logger.warning("BACKGROUNDS_DATA environment variable not found, using default backgrounds")
return get_default_backgrounds()
except Exception as e:
logger.error(f"Error loading backgrounds from environment: {e}")
logger.info("Falling back to default backgrounds")
return get_default_backgrounds()
def get_default_backgrounds():
"""๊ธฐ๋ณธ ๋ฐฐ๊ฒฝ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค."""
return {
"SIMPLE_BACKGROUNDS": {
"ํ™”์ดํŠธ ๊ธฐ๋ณธ": "A clean, minimalistic digital background scene featuring a seamless pure white backdrop and a smooth white surface. The lighting is bright and evenly diffused from above, eliminating harsh shadows and creating a crisp, studio-lit environment. There are no products or objects present โ€” only the empty background remains. The composition is ultra-clean and modern, ideal for overlaying lifestyle or hydration-related products. The mood is fresh, light, and professional. Ultra-sharp, studio-quality, high resolution, photo-realistic",
"ํšŒ์ƒ‰ ํˆฌํ†ค": "A clean and minimal product photography background featuring a seamless, near-white light gray tone across both the backdrop and surface. The entire scene is evenly lit with bright, diffused lighting from above, eliminating harsh shadows and producing a calm, sophisticated atmosphere. The composition remains empty โ€” with no products or objects present โ€” offering a soft and airy visual ideal for modern lifestyle, wellness, or eco-friendly branding. The lighting gently enhances spatial depth without creating reflections. Ultra-clear, studio-quality, photo-realistic"
},
"STUDIO_BACKGROUNDS": {
"์—ฐ๋…น์ƒ‰ ์žฅ๋ฏธ ์ •์›": "A high-resolution, commercial-style digital photograph of a sophisticated background setup designed for a luxury product shoot. The scene features soft green tones with lush fern leaves and creamy pastel roses (white, peach, blush pink) artfully arranged. The flowers are placed on a white polished marble platform with soft veining, surrounded by elegant foliage. The lighting is natural and diffused from the top left, producing soft shadows and a serene mood. There is no product in the scene โ€” only the floral arrangement and surface remain, creating a refined, editorial-quality backdrop suitable for overlaying product photography. No object should be centered; the composition should remain balanced and inviting. ultra-detailed, 8K quality, photo-realistic studio setting."
},
"NATURE_BACKGROUNDS": {
"์ž‘์€ ํŒŒ๋„๊ฐ€ ์žˆ๋Š” ํ•ด๋ณ€": "A serene and natural beach-themed product photography scene. The background features warm golden sand and gentle turquoise waves softly rolling onto the shore, with white foam catching the golden light of a late afternoon sun. Around the edges of the frame โ€” but not overlapping the center foreground โ€” small natural elements like seashells, conch shells, and bits of coral are randomly scattered with varied sizes, positions, and quantities to evoke a natural, organic arrangement. The product area remains clean and visually unobstructed to maintain focus. Lighting is soft and ambient with subtle natural shadows to highlight the uploaded product. The overall atmosphere is peaceful, sunlit, and summer-inspired. Ultra photo-realistic, studio-quality"
},
"INDOOR_BACKGROUNDS": {
"๊ธฐ๋ณธ ์ฑ…์ƒ": "A bright, Scandinavian-inspired home office featuring a matte white desk with crisp edges placed against a soft sage green wall. Natural daylight gently enters from the side, casting diffused shadows across the surface and enhancing the calm, focused atmosphere. On the desk are neatly arranged everyday essentials like a few colorful pens, a potted plant, and an open notebook. A neutral-toned ergonomic chair is tucked under the desk, and the surrounding area is intentionally minimal to emphasize clarity and productivity. The entire setting evokes a modern, clutter-free work environment., photo-realistic, high-resolution."
},
"SPECIAL_BACKGROUNDS": {
"๋„ค์ด๋น„ ๋นˆํ‹ฐ์ง€ ํ”Œ๋กœ๋Ÿด ๋ฒฝ์ง€": "A richly detailed studio photography background featuring an ornate, vintage-inspired floral wallpaper design. The backdrop showcases vibrant red, pink, yellow, and green botanical motifs intricately woven across a deep navy blue base. The floral pattern is symmetrical and bold, giving the composition an artistic, maximalist aesthetic. The floor is a clean, solid blue surface, providing visual contrast and modern balance. Lighting is bright and evenly diffused, emphasizing both the product and the intricate details of the wallpaper. Ideal for showcasing creative, lifestyle, or design-forward products. Ultra-detailed, high-resolution, ."
},
"JEWELRY_BACKGROUNDS": {
"ํ™”์ดํŠธ ๋ฏธ๋Ÿฌ ์ŠคํŒŸ ๋ผ์ดํŠธ": "A luxury jewelry product photoshoot featuring a soft white backdrop and a polished white mirrored surface. A single focused overhead light beam softly illuminates the center of the scene, fading smoothly toward the edges with a clean gradient. The glossy white surface reflects the jewelry item with crystal clarity โ€” capturing the shape, facets, and symmetry of the design in perfect mirror-like detail. The reflection appears sharp, clean, and vertically aligned beneath the product, enhancing the sense of luxury and balance. The atmosphere is premium, minimal, and luminous โ€” ideal for high-end diamond earrings or bridal jewelry. Ultra-detailed, studio-quality, photo-realistic"
},
"SPECIAL_EFFECTS_BACKGROUNDS": {
"๋ธ”๋ฃจ๋ธ”๋ž™ ํฐ ๋ฌผ๋ฐฉ์šธ ํšจ๊ณผ": "A deep black and vivid cobalt blue gradient backdrop with a reflective surface splashed by crystalline water droplets frozen mid-air. Backlighting enhances shimmer and motion, creating a sense of waterproof resilience. High-impact, ultra-detailed."
}
}
# ๋ฐฐ๊ฒฝ ๋ฐ์ดํ„ฐ ๋กœ๋“œ
backgrounds_data = load_backgrounds_from_env()
SIMPLE_BACKGROUNDS = backgrounds_data.get("SIMPLE_BACKGROUNDS", {})
STUDIO_BACKGROUNDS = backgrounds_data.get("STUDIO_BACKGROUNDS", {})
NATURE_BACKGROUNDS = backgrounds_data.get("NATURE_BACKGROUNDS", {})
INDOOR_BACKGROUNDS = backgrounds_data.get("INDOOR_BACKGROUNDS", {})
SPECIAL_BACKGROUNDS = backgrounds_data.get("SPECIAL_BACKGROUNDS", {})
JEWELRY_BACKGROUNDS = backgrounds_data.get("JEWELRY_BACKGROUNDS", {})
SPECIAL_EFFECTS_BACKGROUNDS = backgrounds_data.get("SPECIAL_EFFECTS_BACKGROUNDS", {})
# ์•ฑ ๋น„๋ฐ€๋ฒˆํ˜ธ ๋กœ๋“œ
APP_PASSWORD = get_app_password()
# ํ™˜๊ฒฝ๋ณ€์ˆ˜ ๊ฒ€์ฆ ํ•จ์ˆ˜
def validate_environment_variables():
"""ํ•„์ˆ˜ ํ™˜๊ฒฝ๋ณ€์ˆ˜๊ฐ€ ์„ค์ •๋˜์—ˆ๋Š”์ง€ ํ™•์ธํ•ฉ๋‹ˆ๋‹ค."""
logger.info("=== ํ™˜๊ฒฝ๋ณ€์ˆ˜ ๊ฒ€์ฆ ์‹œ์ž‘ ===")
# ๋น„๋ฐ€๋ฒˆํ˜ธ ๊ฒ€์ฆ
logger.info(f"APP_PASSWORD: {'์„ค์ •๋จ' if os.environ.get('APP_PASSWORD') else '๊ธฐ๋ณธ๊ฐ’ ์‚ฌ์šฉ (1089)'}")
# API ํ‚ค ๊ฒ€์ฆ
openai_key = os.environ.get("OPENAI_API_KEY")
replicate_token = os.environ.get("REPLICATE_API_TOKEN")
gemini_key = os.environ.get("GEMINI_API_KEY")
logger.info(f"OPENAI_API_KEY: {'์„ค์ •๋จ' if openai_key else '์„ค์ •๋˜์ง€ ์•Š์Œ'}")
logger.info(f"REPLICATE_API_TOKEN: {'์„ค์ •๋จ' if replicate_token else '์„ค์ •๋˜์ง€ ์•Š์Œ'}")
logger.info(f"GEMINI_API_KEY: {'์„ค์ •๋จ' if gemini_key else '์„ค์ •๋˜์ง€ ์•Š์Œ'}")
# ๋ฐฐ๊ฒฝ ๋ฐ์ดํ„ฐ ๊ฒ€์ฆ
backgrounds_data_env = os.environ.get("BACKGROUNDS_DATA")
if backgrounds_data_env:
logger.info("BACKGROUNDS_DATA: ํ™˜๊ฒฝ๋ณ€์ˆ˜์—์„œ ์„ค์ •๋จ")
try:
parsed_data = json.loads(backgrounds_data_env)
bg_counts = {
category: len(backgrounds)
for category, backgrounds in parsed_data.items()
}
logger.info(f"๋ฐฐ๊ฒฝ ๋ฐ์ดํ„ฐ ๋กœ๋“œ ์„ฑ๊ณต: {bg_counts}")
# ๊ฐ ์นดํ…Œ๊ณ ๋ฆฌ๋ณ„ ์ƒ์„ธ ์ •๋ณด
for category, backgrounds in parsed_data.items():
if backgrounds:
sample_keys = list(backgrounds.keys())[:3] # ์ฒ˜์Œ 3๊ฐœ๋งŒ ํ‘œ์‹œ
logger.info(f" {category}: {len(backgrounds)}๊ฐœ - ์˜ˆ์‹œ: {sample_keys}")
else:
logger.warning(f" {category}: ๋น„์–ด์žˆ์Œ")
except Exception as e:
logger.error(f"BACKGROUNDS_DATA JSON ํŒŒ์‹ฑ ์˜ค๋ฅ˜: {e}")
logger.error("๋ฐฐ๊ฒฝ ๋ฐ์ดํ„ฐ ํ˜•์‹์ด ์˜ฌ๋ฐ”๋ฅธ์ง€ ํ™•์ธํ•ด์ฃผ์„ธ์š”.")
else:
logger.info("BACKGROUNDS_DATA: ํ™˜๊ฒฝ๋ณ€์ˆ˜ ์—†์Œ (๊ธฐ๋ณธ๊ฐ’ ์‚ฌ์šฉ)")
# ์‹ค์ œ ๋กœ๋“œ๋œ ๋ฐฐ๊ฒฝ ๋ฐ์ดํ„ฐ ํ™•์ธ
actual_bg_counts = {
"SIMPLE_BACKGROUNDS": len(SIMPLE_BACKGROUNDS),
"STUDIO_BACKGROUNDS": len(STUDIO_BACKGROUNDS),
"NATURE_BACKGROUNDS": len(NATURE_BACKGROUNDS),
"INDOOR_BACKGROUNDS": len(INDOOR_BACKGROUNDS),
"SPECIAL_BACKGROUNDS": len(SPECIAL_BACKGROUNDS),
"JEWELRY_BACKGROUNDS": len(JEWELRY_BACKGROUNDS),
"SPECIAL_EFFECTS_BACKGROUNDS": len(SPECIAL_EFFECTS_BACKGROUNDS)
}
logger.info(f"์‹ค์ œ ๋กœ๋“œ๋œ ๋ฐฐ๊ฒฝ ๋ฐ์ดํ„ฐ: {actual_bg_counts}")
# ๊ฒฝ๊ณ  ๋ฉ”์‹œ์ง€
missing_apis = []
if not openai_key:
missing_apis.append("OpenAI (GPT ๋ชจ๋ธ ์‚ฌ์šฉ ๋ถˆ๊ฐ€)")
if not replicate_token:
missing_apis.append("Replicate (Flux ๋ชจ๋ธ ๋ฐ ํ™”์งˆ๊ฐœ์„  ์‚ฌ์šฉ ๋ถˆ๊ฐ€)")
if not gemini_key:
missing_apis.append("Gemini (๋ฒˆ์—ญ ๊ธฐ๋Šฅ ์‚ฌ์šฉ ๋ถˆ๊ฐ€)")
if missing_apis:
logger.warning(f"๋ˆ„๋ฝ๋œ API ํ‚ค๋กœ ์ธํ•ด ๋‹ค์Œ ๊ธฐ๋Šฅ์ด ์ œํ•œ๋ฉ๋‹ˆ๋‹ค: {', '.join(missing_apis)}")
else:
logger.info("๋ชจ๋“  API ํ‚ค๊ฐ€ ์„ค์ •๋˜์–ด ์ „์ฒด ๊ธฐ๋Šฅ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.")
logger.info("=== ํ™˜๊ฒฝ๋ณ€์ˆ˜ ๊ฒ€์ฆ ์™„๋ฃŒ ===")
# ํ™˜๊ฒฝ๋ณ€์ˆ˜ ๊ฒ€์ฆ ์‹คํ–‰
validate_environment_variables()
# ์ž„์‹œ ํŒŒ์ผ ์ €์žฅ ํ•จ์ˆ˜
def save_uploaded_file(uploaded_file, suffix='.png'):
try:
logger.info(f"Processing uploaded file: {type(uploaded_file)}")
if uploaded_file is None:
logger.warning("Uploaded file is None")
return None
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as temp_file:
temp_filename = temp_file.name
logger.info(f"Created temporary file: {temp_filename}")
# Gradio ์—…๋กœ๋“œ ํŒŒ์ผ ์ฒ˜๋ฆฌ
if isinstance(uploaded_file, str): # ์ด๋ฏธ ํŒŒ์ผ ๊ฒฝ๋กœ์ธ ๊ฒฝ์šฐ
logger.info(f"Uploaded file is already a path: {uploaded_file}")
return uploaded_file
# PIL Image ์ฒ˜๋ฆฌ
if isinstance(uploaded_file, Image.Image):
logger.info("Uploaded file is a PIL Image")
uploaded_file.save(temp_filename, format="PNG")
return temp_filename
# ๋ฐ”์ด๋„ˆ๋ฆฌ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ
with open(temp_filename, "wb") as f:
if hasattr(uploaded_file, "read"): # ํŒŒ์ผ ๊ฐ์ฒด์ธ ๊ฒฝ์šฐ
logger.info("Processing file object")
content = uploaded_file.read()
f.write(content)
logger.info(f"Wrote {len(content)} bytes to {temp_filename}")
else: # ๋ฐ”์ด๋„ˆ๋ฆฌ ๋ฐ์ดํ„ฐ์ธ ๊ฒฝ์šฐ
logger.info("Processing binary data")
f.write(uploaded_file)
logger.info(f"Wrote data to {temp_filename}")
return temp_filename
except Exception as e:
logger.error(f"Error saving uploaded file: {e}")
logger.error(traceback.format_exc())
return None
# ํ…์ŠคํŠธ ๋ฒˆ์—ญ ํ•จ์ˆ˜ (ํ•œ๊ตญ์–ด โ†’ ์˜์–ด) - Gemini 2.0 Flash ์ „์šฉ
def translate_to_english(text):
"""ํ•œ๊ตญ์–ด ํ…์ŠคํŠธ๋ฅผ ์˜์–ด๋กœ ๋ฒˆ์—ญ (Gemini 2.0 Flash ์‚ฌ์šฉ)"""
try:
if not text or not text.strip():
return ""
# Gemini ํด๋ผ์ด์–ธํŠธ๊ฐ€ ์ดˆ๊ธฐํ™”๋˜์—ˆ๋Š”์ง€ ํ™•์ธ
if gemini_client is None:
logger.warning("Gemini client not available, returning original text")
return text
# Gemini 2.0 Flash๋ฅผ ์‚ฌ์šฉํ•œ ๋ฒˆ์—ญ
try:
response = gemini_client.models.generate_content(
model="gemini-2.0-flash",
config=types.GenerateContentConfig(
system_instruction="You are a professional translator. Translate the given Korean text to English. Keep the translation natural and contextually appropriate for image generation prompts. If the text is already in English, return it as is. Only return the translated text without any additional explanation.",
max_output_tokens=200,
temperature=0.1
),
contents=[f"Translate this to English: {text}"]
)
translated = response.text.strip()
logger.info(f"Translated '{text}' to '{translated}' using Gemini 2.0 Flash")
return translated
except Exception as e:
logger.error(f"Gemini translation error: {e}")
logger.warning("Translation failed, returning original text")
return text
except Exception as e:
logger.error(f"Translation error: {e}")
return text
# ํ”„๋กฌํ”„ํŠธ ์ƒ์„ฑ ํ•จ์ˆ˜ (์ข…ํšก๋น„์™€ ์š”์ฒญ์‚ฌํ•ญ ํ†ตํ•ฉ)
def generate_prompt(background_type, background_name, user_request, aspect_ratio="1:1"):
# ๊ธฐ๋ณธ ๊ณ ์ • ํ”„๋กฌํ”„ํŠธ (์ข…ํšก๋น„ ์ •๋ณด ํฌํ•จ) - ์˜์–ด๋กœ ๋ณ€๊ฒฝ
fixed_prompt = f"""
## Fixed Prompt (Required)
[Aspect Ratio: {aspect_ratio}]
[Foreground: all uploaded product images, preserve their original proportions and clarity]
[Preserve originals: keep the same random seed; maintain exact shape and aspect ratio; no vertical or horizontal scaling; do not alter any existing logos or text]
[Product sizing: ensure product images maintain at least 50% of their height relative to the background]
[Composition: products must be naturally composited with the background, maintain proper shadows aligned with lighting]
[Product placement: if products already exist in the background prompt, follow their exact arrangement and positioning]
"""
# ๋ฐฐ๊ฒฝ ํ”„๋กฌํ”„ํŠธ ์„ ํƒ
if background_type == "์‹ฌํ”Œ ๋ฐฐ๊ฒฝ":
background_prompt = SIMPLE_BACKGROUNDS.get(background_name, "")
elif background_type == "์ŠคํŠœ๋””์˜ค ๋ฐฐ๊ฒฝ":
background_prompt = STUDIO_BACKGROUNDS.get(background_name, "")
elif background_type == "์ž์—ฐ ํ™˜๊ฒฝ":
background_prompt = NATURE_BACKGROUNDS.get(background_name, "")
elif background_type == "์‹ค๋‚ด ํ™˜๊ฒฝ":
background_prompt = INDOOR_BACKGROUNDS.get(background_name, "")
elif background_type == "ํŠน์ˆ˜๋ฐฐ๊ฒฝ":
background_prompt = SPECIAL_BACKGROUNDS.get(background_name, "")
elif background_type == "์ฃผ์–ผ๋ฆฌ":
background_prompt = JEWELRY_BACKGROUNDS.get(background_name, "")
elif background_type == "ํŠน์ˆ˜ํšจ๊ณผ":
background_prompt = SPECIAL_EFFECTS_BACKGROUNDS.get(background_name, "")
else:
background_prompt = "clean white background with soft even lighting"
# ์‚ฌ์šฉ์ž ์š”์ฒญ์‚ฌํ•ญ ์ฒ˜๋ฆฌ
if user_request and user_request.strip():
# ํ•œ๊ตญ์–ด ์š”์ฒญ์‚ฌํ•ญ์„ ์˜์–ด๋กœ ๋ฒˆ์—ญ (Gemini 2.0 Flash ์‚ฌ์šฉ)
translated_request = translate_to_english(user_request)
# ๋ฒˆ์—ญ๋œ ์š”์ฒญ์‚ฌํ•ญ์„ ๋ฐฐ๊ฒฝ ํ”„๋กฌํ”„ํŠธ์— ํ†ตํ•ฉ
integrated_background = f"{background_prompt} Additionally, incorporate the following elements naturally into the scene: {translated_request}. Ensure these elements blend harmoniously with the existing background while maintaining the overall aesthetic and lighting."
# ์š”์ฒญ ํ”„๋กฌํ”„ํŠธ ์„น์…˜ (๋ฒˆ์—ญ๋œ ๋‚ด์šฉ ์‚ฌ์šฉ)
request_prompt = f"""
## Request Prompt
{translated_request}
"""
# ๋ฐฐ๊ฒฝ ํ”„๋กฌํ”„ํŠธ ์„น์…˜
background_section = f"""
## Background Prompt (Background Settings)
{integrated_background}
"""
else:
# ์š”์ฒญ์‚ฌํ•ญ์ด ์—†๋Š” ๊ฒฝ์šฐ
request_prompt = f"""
## Request Prompt
No specific request
"""
# ์š”์ฒญ์‚ฌํ•ญ์ด ์—†๋Š” ๊ฒฝ์šฐ ๊ธฐ๋ณธ ๋ฐฐ๊ฒฝ๋งŒ ์‚ฌ์šฉ
background_section = f"""
## Background Prompt (Background Settings)
{background_prompt}
"""
# ์ตœ์ข… ํ”„๋กฌํ”„ํŠธ ์กฐํ•ฉ
final_prompt = fixed_prompt + request_prompt + background_section
return final_prompt
# ์ด๋ฏธ์ง€ ํŽธ์ง‘ ๋ฐ ํ™”์งˆ ๊ฐœ์„  ํ•จ์ˆ˜
def edit_and_enhance_image(
prompt,
image,
quality_level="gpt",
aspect_ratio="1:1",
output_format="jpg",
enable_enhancement=True,
enhancement_level=2
):
try:
logger.info(f"Editing image with prompt: '{prompt[:50]}...' (truncated)")
logger.info(f"Parameters: quality_level={quality_level}, aspect_ratio={aspect_ratio}, output_format={output_format}")
logger.info(f"Enhancement requested: {enable_enhancement}, level: {enhancement_level}")
if image is None:
logger.error("No image provided")
return None, None, None, "์ด๋ฏธ์ง€๋ฅผ ์—…๋กœ๋“œํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค."
# ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ
processed_image = None
temp_paths = [] # ๋‚˜์ค‘์— ์ •๋ฆฌํ•  ๊ฒฝ๋กœ ์ถ”์ 
img_path = save_uploaded_file(image)
if img_path:
logger.info(f"Saved image to temp path: {img_path}")
processed_image = open(img_path, "rb")
temp_paths.append(img_path)
else:
logger.error("Failed to save image")
return None, None, None, "์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ์— ์‹คํŒจํ–ˆ์Šต๋‹ˆ๋‹ค. ๋‹ค๋ฅธ ์ด๋ฏธ์ง€๋ฅผ ์—…๋กœ๋“œํ•ด ๋ณด์„ธ์š”."
# ๋ชจ๋ธ ์„ ํƒ์— ๋”ฐ๋ฅธ ์ฒ˜๋ฆฌ
edited_images = []
usage_info = ""
error_msg = None
try:
if quality_level == "gpt":
# GPT ๋ชจ๋ธ ์‚ฌ์šฉ
if not openai_client.api_key:
logger.error("OpenAI API key is not set")
return None, None, None, "OpenAI API ํ‚ค๊ฐ€ ์„ค์ •๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค. API ํ‚ค๋ฅผ ์„ค์ •ํ•ด์ฃผ์„ธ์š”."
# ์ข…ํšก๋น„๋ฅผ ํฌ๊ธฐ๋กœ ๋ณ€ํ™˜
size_mapping = {
"1:1": "1024x1024",
"3:2": "1536x1024",
"2:3": "1024x1536"
}
size = size_mapping.get(aspect_ratio, "1024x1024")
params = {
"prompt": prompt,
"model": "gpt-image-1",
"n": 1,
"size": size,
"image": processed_image
}
logger.info(f"Calling OpenAI API for image editing")
response = openai_client.images.edit(**params)
logger.info("OpenAI API call successful")
# ๊ฒฐ๊ณผ ์ฒ˜๋ฆฌ
for i, data in enumerate(response.data):
logger.info(f"Processing result image {i+1}/{len(response.data)}")
if hasattr(data, 'b64_json') and data.b64_json:
image_data = base64.b64decode(data.b64_json)
image = Image.open(io.BytesIO(image_data))
elif hasattr(data, 'url') and data.url:
response_url = requests.get(data.url)
image = Image.open(io.BytesIO(response_url.content))
else:
logger.warning(f"No image data found in response item {i+1}")
continue
# ์ด๋ฏธ์ง€ ํ˜•์‹ ๋ณ€ํ™˜
if output_format.lower() != "png" and image.mode == "RGBA":
background = Image.new("RGB", image.size, (255, 255, 255))
background.paste(image, mask=image.split()[3])
image = background
edited_images.append(image)
usage_info = "์ด๋ฏธ์ง€ ํŽธ์ง‘ ์™„๋ฃŒ (GPT ๋ชจ๋ธ ์‚ฌ์šฉ)"
else: # quality_level == "flux"
# Flux ๋ชจ๋ธ ์‚ฌ์šฉ (ํ•ญ์ƒ ๊ธฐ๋ณธ ํ™”์งˆ๊ฐœ์„  1ํšŒ ์ ์šฉ)
if not os.environ.get("REPLICATE_API_TOKEN"):
logger.error("Replicate API token is not set")
return None, None, None, "Replicate API ํ† ํฐ์ด ์„ค์ •๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค. API ํ† ํฐ์„ ์„ค์ •ํ•ด์ฃผ์„ธ์š”."
logger.info(f"Using Flux model for image editing")
# Flux ๋ชจ๋ธ๋กœ ์ด๋ฏธ์ง€ ์ƒ์„ฑ
output = replicate.run(
"black-forest-labs/flux-kontext-pro",
input={
"prompt": prompt,
"input_image": processed_image,
"output_format": output_format.lower(),
"aspect_ratio": aspect_ratio,
"safety_tolerance": 2
}
)
logger.info(f"Flux API response received")
# Flux API ์‘๋‹ต ์ฒ˜๋ฆฌ
flux_image = None
if output:
# output์ด ๋ฐ”์ดํŠธ ์ŠคํŠธ๋ฆผ์ธ ๊ฒฝ์šฐ
if hasattr(output, 'read'):
image_data = output.read()
flux_image = Image.open(io.BytesIO(image_data))
# output์ด URL์ธ ๊ฒฝ์šฐ
elif isinstance(output, str) and output.startswith('http'):
response_url = requests.get(output)
flux_image = Image.open(io.BytesIO(response_url.content))
# output์ด ๋ฐ”์ด๋„ˆ๋ฆฌ ๋ฐ์ดํ„ฐ์ธ ๊ฒฝ์šฐ
else:
flux_image = Image.open(io.BytesIO(output))
# ์ด๋ฏธ์ง€ ํ˜•์‹ ๋ณ€ํ™˜
if output_format.lower() != "png" and flux_image.mode == "RGBA":
background = Image.new("RGB", flux_image.size, (255, 255, 255))
background.paste(flux_image, mask=flux_image.split()[3])
flux_image = background
# Flux ๋ชจ๋ธ์€ ํ•ญ์ƒ ์ฒซ ๋ฒˆ์งธ ํ™”์งˆ ๊ฐœ์„ ์„ ์ž๋™ ์ ์šฉ
try:
logger.info("Applying automatic first enhancement for Flux model")
# ์ž„์‹œ ํŒŒ์ผ๋กœ ์ €์žฅ
temp_flux_path = tempfile.mktemp(suffix='.png')
flux_image.save(temp_flux_path)
temp_paths.append(temp_flux_path)
# ์ฒซ ๋ฒˆ์งธ ํ™”์งˆ ํ–ฅ์ƒ (Flux ๋ชจ๋ธ ๊ธฐ๋ณธ ์ ์šฉ)
first_enhanced_output = replicate.run(
"philz1337x/clarity-upscaler:dfad41707589d68ecdccd1dfa600d55a208f9310748e44bfe35b4a6291453d5e",
input={
"image": open(temp_flux_path, "rb"),
"scale_factor": 2,
"resemblance": 0.8,
"creativity": 0.2,
"output_format": output_format.lower(),
"prompt": prompt,
"negative_prompt": "(worst quality, low quality, normal quality:2)"
}
)
if first_enhanced_output and isinstance(first_enhanced_output, list) and len(first_enhanced_output) > 0:
first_enhanced_url = first_enhanced_output[0]
first_enhanced_response = requests.get(first_enhanced_url)
if first_enhanced_response.status_code == 200:
first_enhanced_image = Image.open(io.BytesIO(first_enhanced_response.content))
# ์ด๋ฏธ์ง€ ํ˜•์‹ ๋ณ€ํ™˜
if output_format.lower() != "png" and first_enhanced_image.mode == "RGBA":
background = Image.new("RGB", first_enhanced_image.size, (255, 255, 255))
background.paste(first_enhanced_image, mask=first_enhanced_image.split()[3])
first_enhanced_image = background
edited_images.append(first_enhanced_image)
usage_info = "์ด๋ฏธ์ง€ ํŽธ์ง‘ ์™„๋ฃŒ (Flux ๋ชจ๋ธ + ๊ธฐ๋ณธ ํ™”์งˆ๊ฐœ์„  ์ ์šฉ)"
logger.info("First enhancement completed for Flux model")
else:
# ์ฒซ ๋ฒˆ์งธ ํ™”์งˆ๊ฐœ์„  ์‹คํŒจ ์‹œ ์›๋ณธ ์‚ฌ์šฉ
edited_images.append(flux_image)
usage_info = "์ด๋ฏธ์ง€ ํŽธ์ง‘ ์™„๋ฃŒ (Flux ๋ชจ๋ธ ์‚ฌ์šฉ, ๊ธฐ๋ณธ ํ™”์งˆ๊ฐœ์„  ์‹คํŒจ)"
else:
# ์ฒซ ๋ฒˆ์งธ ํ™”์งˆ๊ฐœ์„  ์‹คํŒจ ์‹œ ์›๋ณธ ์‚ฌ์šฉ
edited_images.append(flux_image)
usage_info = "์ด๋ฏธ์ง€ ํŽธ์ง‘ ์™„๋ฃŒ (Flux ๋ชจ๋ธ ์‚ฌ์šฉ, ๊ธฐ๋ณธ ํ™”์งˆ๊ฐœ์„  ์‹คํŒจ)"
except Exception as e:
logger.error(f"Error in first enhancement for Flux: {e}")
# ์ฒซ ๋ฒˆ์งธ ํ™”์งˆ๊ฐœ์„  ์‹คํŒจ ์‹œ ์›๋ณธ ์‚ฌ์šฉ
edited_images.append(flux_image)
usage_info = f"์ด๋ฏธ์ง€ ํŽธ์ง‘ ์™„๋ฃŒ (Flux ๋ชจ๋ธ ์‚ฌ์šฉ, ๊ธฐ๋ณธ ํ™”์งˆ๊ฐœ์„  ์˜ค๋ฅ˜: {str(e)})"
else:
logger.error("No output from Flux API")
error_msg = "Flux API์—์„œ ์‘๋‹ต์„ ๋ฐ›์ง€ ๋ชปํ–ˆ์Šต๋‹ˆ๋‹ค."
except Exception as e:
if quality_level == "gpt":
logger.error(f"OpenAI API call error: {e}")
error_msg = f"OpenAI API ํ˜ธ์ถœ ์˜ค๋ฅ˜: {str(e)}"
else:
logger.error(f"Flux API call error: {e}")
error_msg = f"Flux API ํ˜ธ์ถœ ์˜ค๋ฅ˜: {str(e)}"
finally:
# ์ž„์‹œ ํŒŒ์ผ ์ •๋ฆฌ
if processed_image and hasattr(processed_image, 'close'):
processed_image.close()
# ํ™”์งˆ ํ–ฅ์ƒ ์ฒ˜๋ฆฌ (GPT ๋ชจ๋ธ์€ ์ผ๋ฐ˜์ ์ธ ํ™”์งˆ๊ฐœ์„ , Flux ๋ชจ๋ธ์€ 2์ฐจ ํ™”์งˆ๊ฐœ์„ )
enhanced_image = None
temp_image_path = None
if enable_enhancement and edited_images and not error_msg:
try:
if quality_level == "gpt":
# GPT ๋ชจ๋ธ: ์ผ๋ฐ˜์ ์ธ ํ™”์งˆ ๊ฐœ์„ 
logger.info(f"Enhancing GPT image with Replicate API, enhancement level: {enhancement_level}")
enhancement_info = "ํ™”์งˆ ๊ฐœ์„ "
else:
# Flux ๋ชจ๋ธ: 2์ฐจ ํ™”์งˆ ๊ฐœ์„  (์ด๋ฏธ 1์ฐจ๋Š” ์ ์šฉ๋จ)
logger.info(f"Applying second enhancement for Flux image, enhancement level: {enhancement_level}")
enhancement_info = "2์ฐจ ํ™”์งˆ ๊ฐœ์„ "
if not os.environ.get("REPLICATE_API_TOKEN"):
logger.error("Replicate API token is not set")
usage_info += f" | {enhancement_info} ์‹คํŒจ: Replicate API ํ† ํฐ์ด ์„ค์ •๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค."
else:
# ์ž„์‹œ ํŒŒ์ผ๋กœ ์ €์žฅ
temp_image_path = tempfile.mktemp(suffix='.png')
edited_images[0].save(temp_image_path)
temp_paths.append(temp_image_path)
# Replicate API๋กœ ํ™”์งˆ ํ–ฅ์ƒ
output = replicate.run(
"philz1337x/clarity-upscaler:dfad41707589d68ecdccd1dfa600d55a208f9310748e44bfe35b4a6291453d5e",
input={
"image": open(temp_image_path, "rb"),
"scale_factor": enhancement_level,
"resemblance": 0.8,
"creativity": 0.2,
"output_format": output_format.lower(),
"prompt": prompt,
"negative_prompt": "(worst quality, low quality, normal quality:2)"
}
)
logger.info(f"Replicate API response: {output}")
if output and isinstance(output, list) and len(output) > 0:
enhanced_url = output[0]
enhanced_response = requests.get(enhanced_url)
if enhanced_response.status_code == 200:
enhanced_image = Image.open(io.BytesIO(enhanced_response.content))
if output_format.lower() != "png" and enhanced_image.mode == "RGBA":
background = Image.new("RGB", enhanced_image.size, (255, 255, 255))
background.paste(enhanced_image, mask=enhanced_image.split()[3])
enhanced_image = background
if quality_level == "gpt":
usage_info += f" | {enhancement_info} ์™„๋ฃŒ: Replicate Clarity Upscaler ์‚ฌ์šฉ"
else:
usage_info += f" | {enhancement_info} ์™„๋ฃŒ: ์ด 2ํšŒ ํ™”์งˆ๊ฐœ์„  ์ ์šฉ"
else:
usage_info += f" | {enhancement_info} ์‹คํŒจ: ์ด๋ฏธ์ง€ ๋‹ค์šด๋กœ๋“œ ์˜ค๋ฅ˜"
else:
usage_info += f" | {enhancement_info} ์‹คํŒจ: Replicate API ์‘๋‹ต ์—†์Œ"
except Exception as e:
logger.error(f"Error enhancing image: {e}")
if quality_level == "gpt":
usage_info += f" | ํ™”์งˆ ๊ฐœ์„  ์‹คํŒจ: {str(e)}"
else:
usage_info += f" | 2์ฐจ ํ™”์งˆ ๊ฐœ์„  ์‹คํŒจ: {str(e)}"
# ์ž„์‹œ ํŒŒ์ผ ์ •๋ฆฌ
for path in temp_paths:
if os.path.exists(path):
try:
os.remove(path)
logger.info(f"Removed temp file: {path}")
except Exception as e:
logger.error(f"Error removing temp file {path}: {e}")
# ๊ฒฐ๊ณผ ๋ฐ˜ํ™˜
if error_msg:
return None, None, None, error_msg
elif edited_images:
if enable_enhancement and enhanced_image:
return edited_images, [enhanced_image], usage_info, None
else:
return edited_images, None, usage_info, None
else:
return None, None, None, "์ด๋ฏธ์ง€ ํŽธ์ง‘์— ์‹คํŒจํ–ˆ์Šต๋‹ˆ๋‹ค."
except Exception as e:
logger.error(f"Error in edit_and_enhance_image function: {e}")
logger.error(traceback.format_exc())
return None, None, None, f"์—๋Ÿฌ ๋ฐœ์ƒ: {str(e)}\n\n{traceback.format_exc()}"
# Gradio ์ธํ„ฐํŽ˜์ด์Šค ๊ตฌ์„ฑ
def create_gradio_interface():
try:
logger.info("Creating Gradio interface")
with gr.Blocks(title="AI ์ด๋ฏธ์ง€ ํŽธ์ง‘ ๋ฐ ํ™”์งˆ ๊ฐœ์„ ") as app:
gr.Markdown("# AI ์ด๋ฏธ์ง€ ํŽธ์ง‘ ๋ฐ ํ™”์งˆ ๊ฐœ์„  ๋„๊ตฌ")
# ๋น„๋ฐ€๋ฒˆํ˜ธ ์ž…๋ ฅ ํ•„๋“œ
password_box = gr.Textbox(
label="๋น„๋ฐ€๋ฒˆํ˜ธ",
type="password",
placeholder="์‚ฌ์šฉํ•˜๋ ค๋ฉด ๋น„๋ฐ€๋ฒˆํ˜ธ๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”",
interactive=True
)
# ์ด๋ฏธ์ง€ ํŽธ์ง‘ ๋ฐ ํ™”์งˆ ๊ฐœ์„  ์ธํ„ฐํŽ˜์ด์Šค
with gr.Row():
with gr.Column():
# ์ƒํ’ˆ ์ด๋ฏธ์ง€ ์—…๋กœ๋“œ
image = gr.Image(label="์ƒํ’ˆ ์ด๋ฏธ์ง€ ์—…๋กœ๋“œ", type="pil")
with gr.Row():
with gr.Column():
background_type = gr.Radio(
choices=["์‹ฌํ”Œ ๋ฐฐ๊ฒฝ", "์ŠคํŠœ๋””์˜ค ๋ฐฐ๊ฒฝ", "์ž์—ฐ ํ™˜๊ฒฝ", "์‹ค๋‚ด ํ™˜๊ฒฝ", "ํŠน์ˆ˜๋ฐฐ๊ฒฝ", "์ฃผ์–ผ๋ฆฌ", "ํŠน์ˆ˜ํšจ๊ณผ"],
label="๋ฐฐ๊ฒฝ ์œ ํ˜•",
value="์‹ฌํ”Œ ๋ฐฐ๊ฒฝ"
)
# ๋“œ๋กญ๋‹ค์šด ์ปดํฌ๋„ŒํŠธ๋“ค - ํ™˜๊ฒฝ๋ณ€์ˆ˜์—์„œ ๋กœ๋“œ๋œ ๋ฐ์ดํ„ฐ ์‚ฌ์šฉ
simple_choices = list(SIMPLE_BACKGROUNDS.keys()) if SIMPLE_BACKGROUNDS else []
studio_choices = list(STUDIO_BACKGROUNDS.keys()) if STUDIO_BACKGROUNDS else []
nature_choices = list(NATURE_BACKGROUNDS.keys()) if NATURE_BACKGROUNDS else []
indoor_choices = list(INDOOR_BACKGROUNDS.keys()) if INDOOR_BACKGROUNDS else []
special_choices = list(SPECIAL_BACKGROUNDS.keys()) if SPECIAL_BACKGROUNDS else []
jewelry_choices = list(JEWELRY_BACKGROUNDS.keys()) if JEWELRY_BACKGROUNDS else []
special_effects_choices = list(SPECIAL_EFFECTS_BACKGROUNDS.keys()) if SPECIAL_EFFECTS_BACKGROUNDS else []
# ํ™˜๊ฒฝ๋ณ€์ˆ˜๊ฐ€ ์—†์–ด์„œ ๋ฐฐ๊ฒฝ ๋ฐ์ดํ„ฐ๊ฐ€ ๋น„์–ด์žˆ๋Š” ๊ฒฝ์šฐ ๊ฒฝ๊ณ 
if not any([simple_choices, studio_choices, nature_choices, indoor_choices, special_choices, jewelry_choices, special_effects_choices]):
logger.error("๋ชจ๋“  ๋ฐฐ๊ฒฝ ์นดํ…Œ๊ณ ๋ฆฌ๊ฐ€ ๋น„์–ด์žˆ์Šต๋‹ˆ๋‹ค. BACKGROUNDS_DATA ํ™˜๊ฒฝ๋ณ€์ˆ˜๋ฅผ ์„ค์ •ํ•ด์ฃผ์„ธ์š”.")
simple_dropdown = gr.Dropdown(
choices=simple_choices,
value=simple_choices[0] if simple_choices else None,
label="์‹ฌํ”Œ ๋ฐฐ๊ฒฝ ์„ ํƒ",
visible=True,
interactive=True
)
studio_dropdown = gr.Dropdown(
choices=studio_choices,
value=studio_choices[0] if studio_choices else None,
label="์ŠคํŠœ๋””์˜ค ๋ฐฐ๊ฒฝ ์„ ํƒ",
visible=False,
interactive=True
)
nature_dropdown = gr.Dropdown(
choices=nature_choices,
value=nature_choices[0] if nature_choices else None,
label="์ž์—ฐ ํ™˜๊ฒฝ ์„ ํƒ",
visible=False,
interactive=True
)
indoor_dropdown = gr.Dropdown(
choices=indoor_choices,
value=indoor_choices[0] if indoor_choices else None,
label="์‹ค๋‚ด ํ™˜๊ฒฝ ์„ ํƒ",
visible=False,
interactive=True
)
special_dropdown = gr.Dropdown(
choices=special_choices,
value=special_choices[0] if special_choices else None,
label="ํŠน์ˆ˜๋ฐฐ๊ฒฝ ์„ ํƒ",
visible=False,
interactive=True
)
jewelry_dropdown = gr.Dropdown(
choices=jewelry_choices,
value=jewelry_choices[0] if jewelry_choices else None,
label="์ฃผ์–ผ๋ฆฌ ๋ฐฐ๊ฒฝ ์„ ํƒ",
visible=False,
interactive=True
)
special_effects_dropdown = gr.Dropdown(
choices=special_effects_choices,
value=special_effects_choices[0] if special_effects_choices else None,
label="ํŠน์ˆ˜ํšจ๊ณผ ๋ฐฐ๊ฒฝ ์„ ํƒ",
visible=False,
interactive=True
)
# ๋“œ๋กญ๋‹ค์šด ๋ณ€๊ฒฝ ํ•จ์ˆ˜
def update_dropdowns(bg_type):
"""๋ฐฐ๊ฒฝ ์œ ํ˜•์— ๋”ฐ๋ผ ๋“œ๋กญ๋‹ค์šด์„ ์—…๋ฐ์ดํŠธํ•ฉ๋‹ˆ๋‹ค."""
logger.info(f"Updating dropdowns for background type: {bg_type}")
# ๊ฐ ๋ฐฐ๊ฒฝ ์นดํ…Œ๊ณ ๋ฆฌ์˜ ํ‚ค ๋ชฉ๋ก ๊ฐ€์ ธ์˜ค๊ธฐ
simple_choices = list(SIMPLE_BACKGROUNDS.keys()) if SIMPLE_BACKGROUNDS else []
studio_choices = list(STUDIO_BACKGROUNDS.keys()) if STUDIO_BACKGROUNDS else []
nature_choices = list(NATURE_BACKGROUNDS.keys()) if NATURE_BACKGROUNDS else []
indoor_choices = list(INDOOR_BACKGROUNDS.keys()) if INDOOR_BACKGROUNDS else []
special_choices = list(SPECIAL_BACKGROUNDS.keys()) if SPECIAL_BACKGROUNDS else []
jewelry_choices = list(JEWELRY_BACKGROUNDS.keys()) if JEWELRY_BACKGROUNDS else []
special_effects_choices = list(SPECIAL_EFFECTS_BACKGROUNDS.keys()) if SPECIAL_EFFECTS_BACKGROUNDS else []
# ๋””๋ฒ„๊น… ์ •๋ณด ๋กœ๊น…
logger.info(f"Available choices - Simple: {len(simple_choices)}, Studio: {len(studio_choices)}, Nature: {len(nature_choices)}")
logger.info(f"Indoor: {len(indoor_choices)}, Special: {len(special_choices)}, Jewelry: {len(jewelry_choices)}, Effects: {len(special_effects_choices)}")
return {
simple_dropdown: gr.update(
visible=(bg_type == "์‹ฌํ”Œ ๋ฐฐ๊ฒฝ"),
choices=simple_choices,
value=simple_choices[0] if simple_choices else None
),
studio_dropdown: gr.update(
visible=(bg_type == "์ŠคํŠœ๋””์˜ค ๋ฐฐ๊ฒฝ"),
choices=studio_choices,
value=studio_choices[0] if studio_choices else None
),
nature_dropdown: gr.update(
visible=(bg_type == "์ž์—ฐ ํ™˜๊ฒฝ"),
choices=nature_choices,
value=nature_choices[0] if nature_choices else None
),
indoor_dropdown: gr.update(
visible=(bg_type == "์‹ค๋‚ด ํ™˜๊ฒฝ"),
choices=indoor_choices,
value=indoor_choices[0] if indoor_choices else None
),
special_dropdown: gr.update(
visible=(bg_type == "ํŠน์ˆ˜๋ฐฐ๊ฒฝ"),
choices=special_choices,
value=special_choices[0] if special_choices else None
),
jewelry_dropdown: gr.update(
visible=(bg_type == "์ฃผ์–ผ๋ฆฌ"),
choices=jewelry_choices,
value=jewelry_choices[0] if jewelry_choices else None
),
special_effects_dropdown: gr.update(
visible=(bg_type == "ํŠน์ˆ˜ํšจ๊ณผ"),
choices=special_effects_choices,
value=special_effects_choices[0] if special_effects_choices else None
)
}
background_type.change(
fn=update_dropdowns,
inputs=[background_type],
outputs=[simple_dropdown, studio_dropdown, nature_dropdown, indoor_dropdown, special_dropdown, jewelry_dropdown, special_effects_dropdown]
)
# ์š”์ฒญ์‚ฌํ•ญ ์ž…๋ ฅ
request_text = gr.Textbox(
label="์š”์ฒญ์‚ฌํ•ญ",
placeholder="์ƒํ’ˆ ์ด๋ฏธ์ง€์— ์ ์šฉํ•  ์Šคํƒ€์ผ, ๋ถ„์œ„๊ธฐ, ํŠน๋ณ„ ์š”์ฒญ์‚ฌํ•ญ ๋“ฑ์„ ์ž…๋ ฅํ•˜์„ธ์š”.",
lines=3
)
# ์ƒˆ๋กœ์šด ์˜ต์…˜๋“ค
quality_level = gr.Radio(
label="ํ’ˆ์งˆ ๋ ˆ๋ฒจ",
choices=["gpt", "flux"],
value="flux",
info="GPT: GPT ๋ชจ๋ธ (๊ณ ํ’ˆ์งˆ), ์ผ๋ฐ˜: Flux ๋ชจ๋ธ (๋น ๋ฅธ ์ฒ˜๋ฆฌ + ๊ธฐ๋ณธ ํ™”์งˆ๊ฐœ์„ )"
)
aspect_ratio = gr.Dropdown(
label="์ข…ํšก๋น„",
choices=["1:1", "3:2", "2:3"],
value="1:1"
)
output_format = gr.Dropdown(
label="์ด๋ฏธ์ง€ ํ˜•์‹",
choices=["jpg", "png"],
value="jpg"
)
# ํ™”์งˆ ๊ฐœ์„  ์˜ต์…˜
enable_enhancement = gr.Checkbox(
label="์ถ”๊ฐ€ ํ™”์งˆ ๊ฐœ์„ ",
value=False,
info="GPT: 1ํšŒ ํ™”์งˆ๊ฐœ์„ , Flux: 2์ฐจ ํ™”์งˆ๊ฐœ์„  (๊ธฐ๋ณธ 1ํšŒ + ์ถ”๊ฐ€ 1ํšŒ)"
)
enhancement_level = gr.Slider(label="ํ™”์งˆ ๊ฐœ์„  ๋ ˆ๋ฒจ", minimum=1, maximum=4, value=2, step=1, visible=False)
# ํ”„๋กฌํ”„ํŠธ ์ƒ์„ฑ ๋ฒ„ํŠผ
generate_prompt_btn = gr.Button("ํ”„๋กฌํ”„ํŠธ๋งŒ ์ƒ์„ฑ")
# ํŽธ์ง‘ ๋ฒ„ํŠผ
edit_btn = gr.Button("์ด๋ฏธ์ง€ ํŽธ์ง‘ ๋ฐ ํ™”์งˆ ๊ฐœ์„ ")
with gr.Column():
with gr.Row():
with gr.Column():
gr.Markdown("## ํŽธ์ง‘๋œ ์ด๋ฏธ์ง€")
original_output = gr.Gallery(label="ํŽธ์ง‘ ๊ฒฐ๊ณผ", preview=True)
original_download = gr.File(label="ํŽธ์ง‘ ์ด๋ฏธ์ง€ ๋‹ค์šด๋กœ๋“œ", interactive=False)
with gr.Column():
gr.Markdown("## ํ™”์งˆ ๊ฐœ์„ ๋œ ์ด๋ฏธ์ง€")
enhanced_output = gr.Gallery(label="ํ™”์งˆ ๊ฐœ์„  ๊ฒฐ๊ณผ", preview=True)
enhanced_download = gr.File(label="๊ฐœ์„  ์ด๋ฏธ์ง€ ๋‹ค์šด๋กœ๋“œ", interactive=False)
# ํ”„๋กฌํ”„ํŠธ ์ถœ๋ ฅ
prompt_output = gr.Textbox(label="์ƒ์„ฑ๋œ ํ”„๋กฌํ”„ํŠธ", lines=10, interactive=False)
info = gr.Textbox(label="์ฒ˜๋ฆฌ ์ •๋ณด", interactive=False)
error = gr.Textbox(label="์˜ค๋ฅ˜ ๋ฉ”์‹œ์ง€", interactive=False, visible=True)
# ํ”„๋กฌํ”„ํŠธ๋งŒ ์ƒ์„ฑํ•˜๋Š” ํ•จ์ˆ˜ (๋น„๋ฐ€๋ฒˆํ˜ธ ์ฒดํฌ ํฌํ•จ)
def generate_prompt_with_password_check(password, bg_type, simple, studio, nature, indoor, special, jewelry, special_effects, request_text, aspect_ratio):
# ๋น„๋ฐ€๋ฒˆํ˜ธ ํ™•์ธ - ํ™˜๊ฒฝ๋ณ€์ˆ˜์—์„œ ๊ฐ€์ ธ์˜จ ๋น„๋ฐ€๋ฒˆํ˜ธ์™€ ๋น„๊ต
if password != APP_PASSWORD:
return "๋น„๋ฐ€๋ฒˆํ˜ธ๊ฐ€ ํ‹€๋ ธ์Šต๋‹ˆ๋‹ค. ์˜ฌ๋ฐ”๋ฅธ ๋น„๋ฐ€๋ฒˆํ˜ธ๋ฅผ ์ž…๋ ฅํ•ด์ฃผ์„ธ์š”."
# ๋ฐฐ๊ฒฝ ์„ ํƒ
background_name = ""
if bg_type == "์‹ฌํ”Œ ๋ฐฐ๊ฒฝ":
background_name = simple
elif bg_type == "์ŠคํŠœ๋””์˜ค ๋ฐฐ๊ฒฝ":
background_name = studio
elif bg_type == "์ž์—ฐ ํ™˜๊ฒฝ":
background_name = nature
elif bg_type == "์‹ค๋‚ด ํ™˜๊ฒฝ":
background_name = indoor
elif bg_type == "ํŠน์ˆ˜๋ฐฐ๊ฒฝ":
background_name = special
elif bg_type == "์ฃผ์–ผ๋ฆฌ":
background_name = jewelry
elif bg_type == "ํŠน์ˆ˜ํšจ๊ณผ":
background_name = special_effects
# ํ”„๋กฌํ”„ํŠธ ์ƒ์„ฑ (์ข…ํšก๋น„ ํฌํ•จ)
prompt = generate_prompt(bg_type, background_name, request_text, aspect_ratio)
return prompt
# ๋น„๋ฐ€๋ฒˆํ˜ธ ํ™•์ธ ํ•จ์ˆ˜
def check_password(password, *args):
if password != APP_PASSWORD:
return (
[], # original_output
None, # original_download
[], # enhanced_output
None, # enhanced_download
"", # prompt_output
"", # info
"๋น„๋ฐ€๋ฒˆํ˜ธ๊ฐ€ ํ‹€๋ ธ์Šต๋‹ˆ๋‹ค. ์˜ฌ๋ฐ”๋ฅธ ๋น„๋ฐ€๋ฒˆํ˜ธ๋ฅผ ์ž…๋ ฅํ•ด์ฃผ์„ธ์š”." # error
)
# ์ด๋ฏธ์ง€ ํŽธ์ง‘ ์š”์ฒญ ์ฒ˜๋ฆฌ
image, bg_type, simple, studio, nature, indoor, special, jewelry, special_effects, request_text, quality_level, aspect_ratio, output_format, enable_enhancement = args
# ๋ฐฐ๊ฒฝ ์„ ํƒ
background_name = ""
if bg_type == "์‹ฌํ”Œ ๋ฐฐ๊ฒฝ":
background_name = simple
elif bg_type == "์ŠคํŠœ๋””์˜ค ๋ฐฐ๊ฒฝ":
background_name = studio
elif bg_type == "์ž์—ฐ ํ™˜๊ฒฝ":
background_name = nature
elif bg_type == "์‹ค๋‚ด ํ™˜๊ฒฝ":
background_name = indoor
elif bg_type == "ํŠน์ˆ˜๋ฐฐ๊ฒฝ":
background_name = special
elif bg_type == "์ฃผ์–ผ๋ฆฌ":
background_name = jewelry
elif bg_type == "ํŠน์ˆ˜ํšจ๊ณผ":
background_name = special_effects
# ํ”„๋กฌํ”„ํŠธ ์ƒ์„ฑ
prompt = generate_prompt(bg_type, background_name, request_text, aspect_ratio)
# ์ด๋ฏธ์ง€ ํŽธ์ง‘ ๋ฐ ํ™”์งˆ ๊ฐœ์„  ์‹คํ–‰
original_images, enhanced_images, usage_info, error_msg = edit_and_enhance_image(
prompt, image, quality_level, aspect_ratio, output_format, enable_enhancement, 2
)
# ์ด๋ฏธ์ง€ ์ €์žฅ ๋ฐ ๋‹ค์šด๋กœ๋“œ ํŒŒ์ผ ์ค€๋น„
original_path = None
enhanced_path = None
if error_msg:
logger.error(f"Error returned from edit_and_enhance_image: {error_msg}")
return (
[], # original_output
None, # original_download
[], # enhanced_output
None, # enhanced_download
prompt, # prompt_output
"", # info
error_msg # error
)
else:
# ์›๋ณธ ํŽธ์ง‘ ์ด๋ฏธ์ง€ ์ €์žฅ
if original_images and len(original_images) > 0:
try:
original_path = f"original_image.{output_format}"
original_images[0].save(original_path)
logger.info(f"Saved original image to {original_path}")
except Exception as e:
logger.error(f"Error saving original image: {e}")
# ํ™”์งˆ ๊ฐœ์„  ์ด๋ฏธ์ง€ ์ €์žฅ
if enhanced_images and len(enhanced_images) > 0:
try:
enhanced_path = f"enhanced_image.{output_format}"
enhanced_images[0].save(enhanced_path)
logger.info(f"Saved enhanced image to {enhanced_path}")
except Exception as e:
logger.error(f"Error saving enhanced image: {e}")
# ๊ฒฐ๊ณผ ๋ฐ˜ํ™˜
return (
original_images if original_images else [], # original_output
original_path, # original_download
enhanced_images if enhanced_images else [], # enhanced_output
enhanced_path, # enhanced_download
prompt, # prompt_output
usage_info, # info
"" # error (๋นˆ ๋ฌธ์ž์—ด๋กœ ์„ค์ •)
)
# ํ”„๋กฌํ”„ํŠธ ์ƒ์„ฑ ๋ฒ„ํŠผ ํด๋ฆญ ์ด๋ฒคํŠธ
generate_prompt_btn.click(
fn=generate_prompt_with_password_check,
inputs=[
password_box,
background_type,
simple_dropdown, studio_dropdown, nature_dropdown, indoor_dropdown, special_dropdown,
jewelry_dropdown, special_effects_dropdown,
request_text, aspect_ratio
],
outputs=[prompt_output]
)
# ํŽธ์ง‘ ๋ฒ„ํŠผ ํด๋ฆญ ์ด๋ฒคํŠธ
edit_btn.click(
fn=check_password,
inputs=[
password_box,
image, background_type,
simple_dropdown, studio_dropdown, nature_dropdown, indoor_dropdown, special_dropdown,
jewelry_dropdown, special_effects_dropdown,
request_text, quality_level, aspect_ratio, output_format, enable_enhancement
],
outputs=[
original_output, original_download,
enhanced_output, enhanced_download,
prompt_output, info, error
]
)
logger.info("Gradio interface created successfully")
return app
except Exception as e:
logger.error(f"Error creating Gradio interface: {e}")
logger.error(traceback.format_exc())
raise
# ์•ฑ ์‹คํ–‰
if __name__ == "__main__":
try:
logger.info("=== AI ์ด๋ฏธ์ง€ ํŽธ์ง‘ ๋ฐ ํ™”์งˆ ๊ฐœ์„  ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ์‹œ์ž‘ ===")
# imgs ๋””๋ ‰ํ† ๋ฆฌ ํ™•์ธ/์ƒ์„ฑ
os.makedirs("imgs", exist_ok=True)
logger.info("์ด๋ฏธ์ง€ ๋””๋ ‰ํ† ๋ฆฌ ์ค€๋น„ ์™„๋ฃŒ")
# ํ™˜๊ฒฝ๋ณ€์ˆ˜ ์žฌ๊ฒ€์ฆ (์•ฑ ์‹œ์ž‘ ์‹œ)
logger.info("์•ฑ ์‹œ์ž‘ ์ „ ํ™˜๊ฒฝ๋ณ€์ˆ˜ ์ตœ์ข… ํ™•์ธ")
if not APP_PASSWORD:
logger.warning("๋น„๋ฐ€๋ฒˆํ˜ธ๊ฐ€ ์„ค์ •๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค. ๊ธฐ๋ณธ ๋น„๋ฐ€๋ฒˆํ˜ธ(1089)๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.")
if not any([
os.environ.get("OPENAI_API_KEY"),
os.environ.get("REPLICATE_API_TOKEN"),
os.environ.get("GEMINI_API_KEY")
]):
logger.warning("API ํ‚ค๊ฐ€ ํ•˜๋‚˜๋„ ์„ค์ •๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค. ๊ธฐ๋Šฅ์ด ์ œํ•œ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.")
# Gradio ์ธํ„ฐํŽ˜์ด์Šค ์ƒ์„ฑ ๋ฐ ์‹คํ–‰
app = create_gradio_interface()
logger.info("Gradio ์ธํ„ฐํŽ˜์ด์Šค ์ƒ์„ฑ ์™„๋ฃŒ")
logger.info("์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค...")
app.launch(share=True)
except Exception as e:
logger.error(f"์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ์‹คํ–‰ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {e}")
logger.error(traceback.format_exc())