Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, DataCollatorForLanguageModeling
|
2 |
+
from datasets import load_dataset
|
3 |
+
|
4 |
+
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
5 |
+
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
|
6 |
+
|
7 |
+
tokenizer.pad_token = tokenizer.eos_token
|
8 |
+
|
9 |
+
dataset = load_dataset("HuggingFaceH4/ultrachat_200k")
|
10 |
+
dataset = dataset['train_sft'].select(range(100))
|
11 |
+
|
12 |
+
def tokenize_function(examples):
|
13 |
+
return tokenizer(examples["prompt"], padding="max_length", truncation=True)
|
14 |
+
|
15 |
+
td = dataset.map(tokenize_function, batched=True)
|
16 |
+
|
17 |
+
training_args = TrainingArguments(
|
18 |
+
output_dir="./output",
|
19 |
+
per_device_train_batch_size=4,
|
20 |
+
num_train_epochs=3,
|
21 |
+
logging_dir="./logs",
|
22 |
+
)
|
23 |
+
|
24 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
"""
|
29 |
+
|
30 |
+
dataloader_config = DataLoaderConfiguration(
|
31 |
+
dispatch_batches=None,
|
32 |
+
split_batches=False,
|
33 |
+
even_batches=True,
|
34 |
+
use_seedable_sampler=True
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
accelerator = Accelerator(dataloader_config=dataloader_config)
|
39 |
+
|
40 |
+
with accelerator.prepare():
|
41 |
+
trainer = Trainer(
|
42 |
+
model=model,
|
43 |
+
args=training_args,
|
44 |
+
data_collator=data_collator,
|
45 |
+
train_dataset=td,
|
46 |
+
)
|
47 |
+
|
48 |
+
trainer.train()
|
49 |
+
trainer.save_model("fine_tuned_gpt2")
|
50 |
+
|
51 |
+
"""
|
52 |
+
|
53 |
+
trainer = Trainer(
|
54 |
+
model=model,
|
55 |
+
args=training_args,
|
56 |
+
data_collator=data_collator,
|
57 |
+
train_dataset=td,
|
58 |
+
)
|
59 |
+
|
60 |
+
trainer.train()
|
61 |
+
trainer.save_model("fine_tuned_gpt2")
|