File size: 8,922 Bytes
95eab0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import gradio as gr
import pandas as pd
import numpy as np
import joblib
import os
# ==============================================================================
# 1. LOAD MODELS AND SCALER (This part runs once when the script starts)
# ==============================================================================
# Dictionary to hold the loaded model objects and a list of their names
all_models = {}
model_names = [
'Linear Regression', 'Ridge Regression', 'Lasso Regression',
'Random Forest', 'Gradient Boosting'
]
BEST_MODEL_NAME = 'Random Forest' # Define the best model to be highlighted
try:
# Load all the regression models
for name in model_names:
# Construct the filename, e.g., 'models/random_forest.joblib'
filename = f"models/{name.lower().replace(' ', '_')}.joblib"
if os.path.exists(filename):
all_models[name] = joblib.load(filename)
else:
raise FileNotFoundError(f"Model file not found: {filename}")
# Load the scaler
scaler_path = 'models/scaler.joblib'
if os.path.exists(scaler_path):
scaler = joblib.load(scaler_path)
else:
raise FileNotFoundError(f"Scaler file not found: {scaler_path}")
models_loaded = True
print("β
All models and scaler loaded successfully!")
# Get the feature names the model was trained on from the scaler
expected_columns = scaler.feature_names_in_
print(f"Models expect {len(expected_columns)} features.")
except Exception as e:
print(f"β ERROR: Could not load models. {e}")
print("Please ensure all '.joblib' files are in the 'models/' directory.")
models_loaded = False
all_models = {}
scaler = None
expected_columns = []
# ==============================================================================
# 2. PREDICTION FUNCTION
# ==============================================================================
def predict_shares_all_models(likes, generation_time, gpu_usage, file_size_kb,
width, height, style_accuracy_score,
is_hand_edited, ethical_concerns_flag,
day_of_week, month, hour, platform):
"""
Performs feature engineering, predicts shares using all loaded models,
and returns formatted outputs for the Gradio interface.
"""
if not models_loaded:
error_message = "Models are not loaded. Please check the console for errors."
return 0, error_message, error_message
# --- Step A: Perform feature engineering ---
sample_data = {
'likes': likes,
'style_accuracy_score': style_accuracy_score,
'generation_time': generation_time,
'gpu_usage': gpu_usage,
'file_size_kb': file_size_kb,
'is_hand_edited': int(is_hand_edited),
'ethical_concerns_flag': int(ethical_concerns_flag),
'width': width,
'height': height,
'day_of_week': day_of_week,
'month': month,
'hour': hour
}
sample_data['aspect_ratio'] = width / height if height > 0 else 0
sample_data['total_pixels'] = width * height
sample_data['is_square'] = int(width == height)
sample_data['is_weekend'] = int(day_of_week >= 5)
for p in ['Twitter', 'TikTok', 'Reddit', 'Instagram']:
sample_data[f'platform_{p}'] = 1 if platform == p else 0
sample_data['engagement_rate'] = likes / (sample_data['total_pixels'] / 1000000 + 1)
sample_data['quality_engagement'] = style_accuracy_score * likes / 100
sample_data['file_density'] = file_size_kb / (sample_data['total_pixels'] / 1000 + 1)
sample_data['gpu_efficiency'] = generation_time / (gpu_usage + 1)
for p in ['Twitter', 'TikTok', 'Reddit', 'Instagram']:
sample_data[f'{p.lower()}_likes'] = likes * sample_data[f'platform_{p}']
sample_data['month_sin'] = np.sin(2 * np.pi * month / 12)
sample_data['month_cos'] = np.cos(2 * np.pi * month / 12)
sample_data['day_sin'] = np.sin(2 * np.pi * day_of_week / 7)
sample_data['day_cos'] = np.cos(2 * np.pi * day_of_week / 7)
# --- Step B: Align columns and Scale ---
sample_df = pd.DataFrame([sample_data])
sample_df = sample_df.reindex(columns=expected_columns, fill_value=0)
sample_scaled = scaler.transform(sample_df)
# --- Step C: Predict with all models ---
predictions = {}
for name, model in all_models.items():
pred_value = model.predict(sample_scaled)[0]
predictions[name] = max(0, int(pred_value))
# --- Step D: Format the outputs for Gradio ---
# 1. Get the single best model prediction
best_model_prediction = predictions.get(BEST_MODEL_NAME, 0)
# 2. Create a Markdown table for all model predictions
all_results_df = pd.DataFrame(list(predictions.items()), columns=['Model', 'Predicted Shares'])
all_results_df = all_results_df.sort_values('Predicted Shares', ascending=False)
all_models_table = all_results_df.to_markdown(index=False)
# 3. Create a Markdown table for the engineered features
features_df = sample_df.T.reset_index()
features_df.columns = ['Feature', 'Value']
features_df['Value'] = features_df['Value'].apply(lambda x: f"{x:.4f}" if isinstance(x, float) else x)
features_table = features_df.to_markdown(index=False)
return best_model_prediction, all_models_table, features_table
# ==============================================================================
# 3. GRADIO INTERFACE
# ==============================================================================
with gr.Blocks(theme=gr.themes.Soft(), title="AI Image Virality Predictor") as demo:
gr.Markdown("# π¨ AI Ghibli Image Virality Predictor")
gr.Markdown("Enter image features to get a virality prediction from multiple regression models.")
with gr.Row():
# --- INPUTS COLUMN ---
with gr.Column(scale=2):
gr.Markdown("### 1. Input Features")
with gr.Accordion("Core Engagement & Image Metrics", open=True):
likes = gr.Slider(minimum=0, maximum=10000, value=500, step=10, label="Likes")
style_accuracy_score = gr.Slider(minimum=0, maximum=100, value=85, step=1, label="Style Accuracy Score (%)")
width = gr.Slider(minimum=256, maximum=2048, value=1024, step=64, label="Width (px)")
height = gr.Slider(minimum=256, maximum=2048, value=1024, step=64, label="Height (px)")
file_size_kb = gr.Slider(minimum=100, maximum=5000, value=1500, step=100, label="File Size (KB)")
with gr.Accordion("Technical & Posting Details", open=True):
generation_time = gr.Slider(minimum=1, maximum=30, value=8, step=0.5, label="Generation Time (s)")
gpu_usage = gr.Slider(minimum=10, maximum=100, value=70, step=5, label="GPU Usage (%)")
platform = gr.Radio(["Instagram", "Twitter", "TikTok", "Reddit"], label="Platform", value="Instagram")
day_of_week = gr.Slider(minimum=0, maximum=6, value=4, step=1, label="Day of Week (0=Mon, 6=Sun)")
month = gr.Slider(minimum=1, maximum=12, value=7, step=1, label="Month (1-12)")
hour = gr.Slider(minimum=0, maximum=23, value=18, step=1, label="Hour of Day (0-23)")
is_hand_edited = gr.Checkbox(label="Was it Hand Edited?", value=False)
ethical_concerns_flag = gr.Checkbox(label="Any Ethical Concerns?", value=False)
predict_btn = gr.Button("Predict Virality", variant="primary")
# --- OUTPUTS COLUMN ---
with gr.Column(scale=3):
gr.Markdown("### 2. Prediction Results")
# Highlighted Best Model Output
best_model_output = gr.Number(
label=f"π Best Model Prediction ({BEST_MODEL_NAME})",
interactive=False
)
# Table for All Model Predictions
with gr.Accordion("Comparison of All Models", open=True):
all_models_output = gr.Markdown(label="All Model Predictions")
# Table for Feature Engineering Details
with gr.Accordion("View Engineered Features", open=False):
features_output = gr.Markdown(label="Feature Engineering Details")
# Connect the button to the function
predict_btn.click(
fn=predict_shares_all_models,
inputs=[
likes, generation_time, gpu_usage, file_size_kb,
width, height, style_accuracy_score,
is_hand_edited, ethical_concerns_flag,
day_of_week, month, hour, platform
],
outputs=[
best_model_output,
all_models_output,
features_output
]
)
# Launch the app
if __name__ == "__main__":
if not models_loaded:
print("\nCannot launch Gradio app because models failed to load.")
else:
demo.launch() |