Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import torch
|
| 5 |
+
from diffusers import (
|
| 6 |
+
DiffusionPipeline,
|
| 7 |
+
DDIMScheduler,
|
| 8 |
+
DPMSolverMultistepScheduler,
|
| 9 |
+
EulerAncestralDiscreteScheduler,
|
| 10 |
+
EulerDiscreteScheduler,
|
| 11 |
+
LMSDiscreteScheduler,
|
| 12 |
+
PNDMScheduler,
|
| 13 |
+
UniPCMultistepScheduler,
|
| 14 |
+
)
|
| 15 |
+
from diffusers.utils import make_image_grid
|
| 16 |
+
|
| 17 |
+
ACCESS_TOKEN = os.environ["ACCESS_TOKEN"]
|
| 18 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
| 19 |
+
"stabilityai/japanese-stable-diffusion-xl",
|
| 20 |
+
trust_remote_code=True,
|
| 21 |
+
torch_dtype=torch.float16,
|
| 22 |
+
use_auth_token=ACCESS_TOKEN
|
| 23 |
+
)
|
| 24 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 25 |
+
pipeline.to(device)
|
| 26 |
+
SCHEDULER_MAPPING = {
|
| 27 |
+
"ddim": DDIMScheduler,
|
| 28 |
+
"plms": PNDMScheduler,
|
| 29 |
+
"lms": LMSDiscreteScheduler,
|
| 30 |
+
"euler": EulerDiscreteScheduler,
|
| 31 |
+
"euler_ancestral": EulerAncestralDiscreteScheduler,
|
| 32 |
+
"dpm_solver++": DPMSolverMultistepScheduler,
|
| 33 |
+
"unipc": UniPCMultistepScheduler,
|
| 34 |
+
}
|
| 35 |
+
noise_scheduler_name = "euler"
|
| 36 |
+
SD_XL_BASE_RATIOS = {
|
| 37 |
+
"0.5": (704, 1408),
|
| 38 |
+
"0.52": (704, 1344),
|
| 39 |
+
"0.57": (768, 1344),
|
| 40 |
+
"0.6": (768, 1280),
|
| 41 |
+
"0.68": (832, 1216),
|
| 42 |
+
"0.72": (832, 1152),
|
| 43 |
+
"0.78": (896, 1152),
|
| 44 |
+
"0.82": (896, 1088),
|
| 45 |
+
"0.88": (960, 1088),
|
| 46 |
+
"0.94": (960, 1024),
|
| 47 |
+
"1.0": (1024, 1024),
|
| 48 |
+
"1.07": (1024, 960),
|
| 49 |
+
"1.13": (1088, 960),
|
| 50 |
+
"1.21": (1088, 896),
|
| 51 |
+
"1.29": (1152, 896),
|
| 52 |
+
"1.38": (1152, 832),
|
| 53 |
+
"1.46": (1216, 832),
|
| 54 |
+
"1.67": (1280, 768),
|
| 55 |
+
"1.75": (1344, 768),
|
| 56 |
+
"1.91": (1344, 704),
|
| 57 |
+
"2.0": (1408, 704),
|
| 58 |
+
"2.09": (1472, 704),
|
| 59 |
+
"2.4": (1536, 640),
|
| 60 |
+
"2.5": (1600, 640),
|
| 61 |
+
"2.89": (1664, 576),
|
| 62 |
+
"3.0": (1728, 576),
|
| 63 |
+
# "small": (512, 512), # for testing
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def set_noise_scheduler(name) -> None:
|
| 68 |
+
pipeline.scheduler = SCHEDULER_MAPPING[name].from_config(pipeline.scheduler.config)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def infer(
|
| 72 |
+
prompt,
|
| 73 |
+
scale=7.5,
|
| 74 |
+
steps=40,
|
| 75 |
+
ratio="1.0",
|
| 76 |
+
n_samples=1,
|
| 77 |
+
seed="random",
|
| 78 |
+
negative_prompt="",
|
| 79 |
+
scheduler_name="euler",
|
| 80 |
+
):
|
| 81 |
+
global noise_scheduler_name
|
| 82 |
+
if noise_scheduler_name != scheduler_name:
|
| 83 |
+
set_noise_scheduler(scheduler_name)
|
| 84 |
+
noise_scheduler_name = scheduler_name
|
| 85 |
+
scale = float(scale)
|
| 86 |
+
steps = int(steps)
|
| 87 |
+
W, H = SD_XL_BASE_RATIOS[ratio]
|
| 88 |
+
n_samples = int(n_samples)
|
| 89 |
+
if seed == "random":
|
| 90 |
+
seed = random.randint(0, 2**32)
|
| 91 |
+
seed = int(seed)
|
| 92 |
+
|
| 93 |
+
images = pipeline(
|
| 94 |
+
prompt=prompt,
|
| 95 |
+
negative_prompt=negative_prompt if len(negative_prompt) > 0 else None,
|
| 96 |
+
guidance_scale=scale,
|
| 97 |
+
generator=torch.Generator(device=device).manual_seed(seed),
|
| 98 |
+
num_images_per_prompt=n_samples,
|
| 99 |
+
num_inference_steps=steps,
|
| 100 |
+
height=H,
|
| 101 |
+
width=W,
|
| 102 |
+
).images
|
| 103 |
+
# grid = make_image_grid(images, 1, len(images))
|
| 104 |
+
return (
|
| 105 |
+
images,
|
| 106 |
+
{
|
| 107 |
+
"seed": seed,
|
| 108 |
+
},
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
examples = [
|
| 113 |
+
["柴犬、カラフルアート"],
|
| 114 |
+
["満面の笑みのお爺さん、スケッチ"],
|
| 115 |
+
["星空の中の1匹の鹿、アート"],
|
| 116 |
+
["ジャングルに立っている日本男性のポートレート"],
|
| 117 |
+
["茶色の猫のイラスト、アニメ"],
|
| 118 |
+
["舞妓さんのポートレート、デジタルアート"],
|
| 119 |
+
]
|
| 120 |
+
with gr.Blocks() as demo:
|
| 121 |
+
gr.Markdown("# Japanese Stable Diffusion XL Demo")
|
| 122 |
+
gr.Markdown(
|
| 123 |
+
"""[Japanese Stable Diffusion XL](https://huggingface.co/stabilityai/japanese-stable-diffusion-xl) is a Japanese-version SDXL by [Stability AI](https://ja.stability.ai/).
|
| 124 |
+
- Blog: https://ja.stability.ai/blog/japanese-stable-diffusion-xl
|
| 125 |
+
- Twitter: https://twitter.com/StabilityAI_JP
|
| 126 |
+
- Discord: https://discord.com/invite/StableJP"""
|
| 127 |
+
)
|
| 128 |
+
gr.Markdown(
|
| 129 |
+
"### You can also try JSDXL on Google Colab [here](https://colab.research.google.com/github/Stability-AI/model-demo-notebooks/blob/main/japanese_stable_diffusion_xl.ipynb). "
|
| 130 |
+
)
|
| 131 |
+
with gr.Group():
|
| 132 |
+
with gr.Row():
|
| 133 |
+
prompt = gr.Textbox(
|
| 134 |
+
label="prompt",
|
| 135 |
+
max_lines=1,
|
| 136 |
+
show_label=False,
|
| 137 |
+
placeholder="Enter your prompt",
|
| 138 |
+
container=False,
|
| 139 |
+
)
|
| 140 |
+
btn = gr.Button("Run", scale=0)
|
| 141 |
+
gallery = gr.Gallery(label="Generated images", show_label=False)
|
| 142 |
+
with gr.Accordion(label="sampling info", open=False):
|
| 143 |
+
info = gr.JSON(label="sampling_info")
|
| 144 |
+
with gr.Accordion(open=False, label="Advanced options"):
|
| 145 |
+
scale = gr.Number(value=7.5, label="cfg_scale")
|
| 146 |
+
steps = gr.Number(value=25, label="steps", visible=False)
|
| 147 |
+
size_ratio = gr.Dropdown(
|
| 148 |
+
choices=list(SD_XL_BASE_RATIOS.keys()),
|
| 149 |
+
value="1.0",
|
| 150 |
+
label="size ratio",
|
| 151 |
+
multiselect=False,
|
| 152 |
+
)
|
| 153 |
+
n_samples = gr.Slider(
|
| 154 |
+
minimum=1,
|
| 155 |
+
maximum=3,
|
| 156 |
+
value=2,
|
| 157 |
+
label="n_samples",
|
| 158 |
+
)
|
| 159 |
+
seed = gr.Text(
|
| 160 |
+
value="random",
|
| 161 |
+
label="seed (integer or 'random')",
|
| 162 |
+
)
|
| 163 |
+
negative_prompt = gr.Textbox(
|
| 164 |
+
label="negative prompt",
|
| 165 |
+
value="",
|
| 166 |
+
)
|
| 167 |
+
noise_scheduler = gr.Dropdown(
|
| 168 |
+
list(SCHEDULER_MAPPING.keys()), value="euler", visible=False
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
inputs = [
|
| 172 |
+
prompt,
|
| 173 |
+
scale,
|
| 174 |
+
steps,
|
| 175 |
+
size_ratio,
|
| 176 |
+
n_samples,
|
| 177 |
+
seed,
|
| 178 |
+
negative_prompt,
|
| 179 |
+
noise_scheduler,
|
| 180 |
+
]
|
| 181 |
+
outputs = [gallery, info]
|
| 182 |
+
prompt.submit(infer, inputs=inputs, outputs=outputs)
|
| 183 |
+
btn.click(infer, inputs=inputs, outputs=outputs)
|
| 184 |
+
gr.Examples(examples=examples, inputs=inputs, outputs=outputs, fn=infer)
|
| 185 |
+
|
| 186 |
+
demo.queue().launch(debug=True, share=True, show_error=True)
|