Spaces:
Runtime error
Runtime error
| import os | |
| import glob | |
| from typing import List | |
| import torch | |
| import torch.nn as nn | |
| from diffusers import StableDiffusionPipeline | |
| from diffusers.pipelines.controlnet import MultiControlNetModel | |
| from PIL import Image | |
| from safetensors import safe_open | |
| from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection | |
| from .utils import is_torch2_available, get_generator | |
| L = 4 | |
| def pos_encode(x, L): | |
| pos_encode = [] | |
| for freq in range(L): | |
| pos_encode.append(torch.cos(2**freq * torch.pi * x)) | |
| pos_encode.append(torch.sin(2**freq * torch.pi * x)) | |
| pos_encode = torch.cat(pos_encode, dim=1) | |
| return pos_encode | |
| if is_torch2_available(): | |
| from .attention_processor import ( | |
| AttnProcessor2_0 as AttnProcessor, | |
| ) | |
| from .attention_processor import ( | |
| CNAttnProcessor2_0 as CNAttnProcessor, | |
| ) | |
| from .attention_processor import ( | |
| IPAttnProcessor2_0 as IPAttnProcessor, | |
| ) | |
| else: | |
| from .attention_processor import AttnProcessor, CNAttnProcessor, IPAttnProcessor | |
| from .resampler import Resampler | |
| class ImageProjModel(torch.nn.Module): | |
| """Projection Model""" | |
| def __init__( | |
| self, | |
| cross_attention_dim=1024, | |
| clip_embeddings_dim=1024, | |
| clip_extra_context_tokens=4, | |
| ): | |
| super().__init__() | |
| self.generator = None | |
| self.cross_attention_dim = cross_attention_dim | |
| self.clip_extra_context_tokens = clip_extra_context_tokens | |
| self.proj = torch.nn.Linear( | |
| clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim | |
| ) | |
| self.norm = torch.nn.LayerNorm(cross_attention_dim) | |
| def forward(self, image_embeds): | |
| embeds = image_embeds | |
| clip_extra_context_tokens = self.proj(embeds).reshape( | |
| -1, self.clip_extra_context_tokens, self.cross_attention_dim | |
| ) | |
| clip_extra_context_tokens = self.norm(clip_extra_context_tokens) | |
| return clip_extra_context_tokens | |
| class MLPProjModel(torch.nn.Module): | |
| """SD model with image prompt""" | |
| def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024): | |
| super().__init__() | |
| self.proj = torch.nn.Sequential( | |
| torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim), | |
| torch.nn.GELU(), | |
| torch.nn.Linear(clip_embeddings_dim, cross_attention_dim), | |
| torch.nn.LayerNorm(cross_attention_dim), | |
| ) | |
| def forward(self, image_embeds): | |
| clip_extra_context_tokens = self.proj(image_embeds) | |
| return clip_extra_context_tokens | |
| class IPAdapter: | |
| def __init__( | |
| self, | |
| sd_pipe, | |
| image_encoder_path, | |
| ip_ckpt, | |
| device, | |
| num_tokens=4, | |
| target_blocks=["block"], | |
| ): | |
| self.device = device | |
| self.image_encoder_path = image_encoder_path | |
| self.ip_ckpt = ip_ckpt | |
| self.num_tokens = num_tokens | |
| self.target_blocks = target_blocks | |
| self.pipe = sd_pipe.to(self.device) | |
| self.set_ip_adapter() | |
| # load image encoder | |
| self.image_encoder = CLIPVisionModelWithProjection.from_pretrained( | |
| self.image_encoder_path | |
| ).to(self.device, dtype=torch.float16) | |
| self.clip_image_processor = CLIPImageProcessor() | |
| # image proj model | |
| self.image_proj_model = self.init_proj() | |
| self.load_ip_adapter() | |
| def init_proj(self): | |
| image_proj_model = ImageProjModel( | |
| cross_attention_dim=self.pipe.unet.config.cross_attention_dim, | |
| clip_embeddings_dim=self.image_encoder.config.projection_dim, | |
| clip_extra_context_tokens=self.num_tokens, | |
| ).to(self.device, dtype=torch.float16) | |
| return image_proj_model | |
| def set_ip_adapter(self): | |
| unet = self.pipe.unet | |
| attn_procs = {} | |
| for name in unet.attn_processors.keys(): | |
| cross_attention_dim = ( | |
| None | |
| if name.endswith("attn1.processor") | |
| else unet.config.cross_attention_dim | |
| ) | |
| if name.startswith("mid_block"): | |
| hidden_size = unet.config.block_out_channels[-1] | |
| elif name.startswith("up_blocks"): | |
| block_id = int(name[len("up_blocks.")]) | |
| hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
| elif name.startswith("down_blocks"): | |
| block_id = int(name[len("down_blocks.")]) | |
| hidden_size = unet.config.block_out_channels[block_id] | |
| if cross_attention_dim is None: | |
| attn_procs[name] = AttnProcessor() | |
| else: | |
| selected = False | |
| for block_name in self.target_blocks: | |
| if block_name in name: | |
| selected = True | |
| break | |
| if selected: | |
| attn_procs[name] = IPAttnProcessor( | |
| hidden_size=hidden_size, | |
| cross_attention_dim=cross_attention_dim, | |
| scale=1.0, | |
| num_tokens=self.num_tokens, | |
| ).to(self.device, dtype=torch.float16) | |
| else: | |
| attn_procs[name] = IPAttnProcessor( | |
| hidden_size=hidden_size, | |
| cross_attention_dim=cross_attention_dim, | |
| scale=1.0, | |
| num_tokens=self.num_tokens, | |
| skip=True, | |
| ).to(self.device, dtype=torch.float16) | |
| unet.set_attn_processor(attn_procs) | |
| if hasattr(self.pipe, "controlnet"): | |
| if isinstance(self.pipe.controlnet, MultiControlNetModel): | |
| for controlnet in self.pipe.controlnet.nets: | |
| controlnet.set_attn_processor( | |
| CNAttnProcessor(num_tokens=self.num_tokens) | |
| ) | |
| else: | |
| self.pipe.controlnet.set_attn_processor( | |
| CNAttnProcessor(num_tokens=self.num_tokens) | |
| ) | |
| def load_ip_adapter(self): | |
| if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors": | |
| state_dict = {"image_proj": {}, "ip_adapter": {}} | |
| with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f: | |
| for key in f.keys(): | |
| if key.startswith("image_proj."): | |
| state_dict["image_proj"][key.replace("image_proj.", "")] = ( | |
| f.get_tensor(key) | |
| ) | |
| elif key.startswith("ip_adapter."): | |
| state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = ( | |
| f.get_tensor(key) | |
| ) | |
| else: | |
| state_dict = torch.load(self.ip_ckpt, map_location="cpu") | |
| self.image_proj_model.load_state_dict(state_dict["image_proj"]) | |
| ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) | |
| ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False) | |
| def get_image_embeds( | |
| self, pil_image=None, clip_image_embeds=None, content_prompt_embeds=None | |
| ): | |
| if pil_image is not None: | |
| if isinstance(pil_image, Image.Image): | |
| pil_image = [pil_image] | |
| clip_image = self.clip_image_processor( | |
| images=pil_image, return_tensors="pt" | |
| ).pixel_values | |
| clip_image_embeds = self.image_encoder( | |
| clip_image.to(self.device, dtype=torch.float16) | |
| ).image_embeds | |
| else: | |
| clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16) | |
| if content_prompt_embeds is not None: | |
| print(clip_image_embeds.shape) | |
| print(content_prompt_embeds.shape) | |
| clip_image_embeds = clip_image_embeds - content_prompt_embeds | |
| image_prompt_embeds = self.image_proj_model(clip_image_embeds) | |
| uncond_image_prompt_embeds = self.image_proj_model( | |
| torch.zeros_like(clip_image_embeds) | |
| ) | |
| return image_prompt_embeds, uncond_image_prompt_embeds | |
| def generate_image_edit_dir( | |
| self, | |
| pil_image=None, | |
| content_prompt_embeds=None, | |
| edit_mlps: dict[torch.nn.Module, float] = None, | |
| ): | |
| print("Combining multiple MLPs!") | |
| if pil_image is not None: | |
| if isinstance(pil_image, Image.Image): | |
| pil_image = [pil_image] | |
| clip_image = self.clip_image_processor( | |
| images=pil_image, return_tensors="pt" | |
| ).pixel_values | |
| clip_image_embeds = self.image_encoder( | |
| clip_image.to(self.device, dtype=torch.float16) | |
| ).image_embeds | |
| pred_editing_dirs = [ | |
| net( | |
| clip_image_embeds, | |
| torch.Tensor([strength]).to(self.device, dtype=torch.float16), | |
| ) | |
| for net, strength in edit_mlps.items() | |
| ] | |
| clip_image_embeds = clip_image_embeds + sum(pred_editing_dirs) | |
| if content_prompt_embeds is not None: | |
| clip_image_embeds = clip_image_embeds - content_prompt_embeds | |
| image_prompt_embeds = self.image_proj_model(clip_image_embeds) | |
| uncond_image_prompt_embeds = self.image_proj_model( | |
| torch.zeros_like(clip_image_embeds) | |
| ) | |
| return image_prompt_embeds, uncond_image_prompt_embeds | |
| def get_image_edit_dir( | |
| self, | |
| start_image=None, | |
| pil_image=None, | |
| pil_image2=None, | |
| content_prompt_embeds=None, | |
| edit_strength=1.0, | |
| ): | |
| print("Blending Two Materials!") | |
| if pil_image is not None: | |
| if isinstance(pil_image, Image.Image): | |
| pil_image = [pil_image] | |
| clip_image = self.clip_image_processor( | |
| images=pil_image, return_tensors="pt" | |
| ).pixel_values | |
| clip_image_embeds = self.image_encoder( | |
| clip_image.to(self.device, dtype=torch.float16) | |
| ).image_embeds | |
| if pil_image2 is not None: | |
| if isinstance(pil_image2, Image.Image): | |
| pil_image2 = [pil_image2] | |
| clip_image2 = self.clip_image_processor( | |
| images=pil_image2, return_tensors="pt" | |
| ).pixel_values | |
| clip_image_embeds2 = self.image_encoder( | |
| clip_image2.to(self.device, dtype=torch.float16) | |
| ).image_embeds | |
| if start_image is not None: | |
| if isinstance(start_image, Image.Image): | |
| start_image = [start_image] | |
| clip_image_start = self.clip_image_processor( | |
| images=start_image, return_tensors="pt" | |
| ).pixel_values | |
| clip_image_embeds_start = self.image_encoder( | |
| clip_image_start.to(self.device, dtype=torch.float16) | |
| ).image_embeds | |
| if content_prompt_embeds is not None: | |
| clip_image_embeds = clip_image_embeds - content_prompt_embeds | |
| clip_image_embeds2 = clip_image_embeds2 - content_prompt_embeds | |
| # clip_image_embeds += edit_strength * (clip_image_embeds2 - clip_image_embeds) | |
| clip_image_embeds = clip_image_embeds_start + edit_strength * ( | |
| clip_image_embeds2 - clip_image_embeds | |
| ) | |
| image_prompt_embeds = self.image_proj_model(clip_image_embeds) | |
| uncond_image_prompt_embeds = self.image_proj_model( | |
| torch.zeros_like(clip_image_embeds) | |
| ) | |
| return image_prompt_embeds, uncond_image_prompt_embeds | |
| def set_scale(self, scale): | |
| for attn_processor in self.pipe.unet.attn_processors.values(): | |
| if isinstance(attn_processor, IPAttnProcessor): | |
| attn_processor.scale = scale | |
| def set_scale(self, scale): | |
| for attn_processor in self.pipe.unet.attn_processors.values(): | |
| if isinstance(attn_processor, IPAttnProcessor): | |
| attn_processor.scale = scale | |
| def generate( | |
| self, | |
| pil_image=None, | |
| clip_image_embeds=None, | |
| prompt=None, | |
| negative_prompt=None, | |
| scale=1.0, | |
| num_samples=4, | |
| seed=None, | |
| guidance_scale=7.5, | |
| num_inference_steps=30, | |
| neg_content_emb=None, | |
| **kwargs, | |
| ): | |
| self.set_scale(scale) | |
| if pil_image is not None: | |
| num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) | |
| else: | |
| num_prompts = clip_image_embeds.size(0) | |
| if prompt is None: | |
| prompt = "best quality, high quality" | |
| if negative_prompt is None: | |
| negative_prompt = ( | |
| "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| ) | |
| if not isinstance(prompt, List): | |
| prompt = [prompt] * num_prompts | |
| if not isinstance(negative_prompt, List): | |
| negative_prompt = [negative_prompt] * num_prompts | |
| image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds( | |
| pil_image=pil_image, | |
| clip_image_embeds=clip_image_embeds, | |
| content_prompt_embeds=neg_content_emb, | |
| ) | |
| bs_embed, seq_len, _ = image_prompt_embeds.shape | |
| image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
| image_prompt_embeds = image_prompt_embeds.view( | |
| bs_embed * num_samples, seq_len, -1 | |
| ) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat( | |
| 1, num_samples, 1 | |
| ) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.view( | |
| bs_embed * num_samples, seq_len, -1 | |
| ) | |
| with torch.inference_mode(): | |
| prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt( | |
| prompt, | |
| device=self.device, | |
| num_images_per_prompt=num_samples, | |
| do_classifier_free_guidance=True, | |
| negative_prompt=negative_prompt, | |
| ) | |
| prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1) | |
| negative_prompt_embeds = torch.cat( | |
| [negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1 | |
| ) | |
| generator = get_generator(seed, self.device) | |
| images = self.pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| **kwargs, | |
| ).images | |
| return images | |
| class IPAdapterXL(IPAdapter): | |
| """SDXL""" | |
| def generate( | |
| self, | |
| pil_image, | |
| prompt=None, | |
| negative_prompt=None, | |
| scale=1.0, | |
| num_samples=4, | |
| seed=None, | |
| num_inference_steps=30, | |
| neg_content_emb=None, | |
| neg_content_prompt=None, | |
| neg_content_scale=1.0, | |
| clip_strength=1.0, | |
| **kwargs, | |
| ): | |
| self.set_scale(scale) | |
| num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) | |
| if prompt is None: | |
| prompt = "best quality, high quality" | |
| if negative_prompt is None: | |
| negative_prompt = ( | |
| "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| ) | |
| if not isinstance(prompt, List): | |
| prompt = [prompt] * num_prompts | |
| if not isinstance(negative_prompt, List): | |
| negative_prompt = [negative_prompt] * num_prompts | |
| if neg_content_emb is None: | |
| if neg_content_prompt is not None: | |
| with torch.inference_mode(): | |
| ( | |
| prompt_embeds_, # torch.Size([1, 77, 2048]) | |
| negative_prompt_embeds_, | |
| pooled_prompt_embeds_, # torch.Size([1, 1280]) | |
| negative_pooled_prompt_embeds_, | |
| ) = self.pipe.encode_prompt( | |
| neg_content_prompt, | |
| num_images_per_prompt=num_samples, | |
| do_classifier_free_guidance=True, | |
| negative_prompt=negative_prompt, | |
| ) | |
| pooled_prompt_embeds_ *= neg_content_scale | |
| else: | |
| pooled_prompt_embeds_ = neg_content_emb | |
| else: | |
| pooled_prompt_embeds_ = None | |
| image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds( | |
| pil_image, content_prompt_embeds=pooled_prompt_embeds_ | |
| ) | |
| bs_embed, seq_len, _ = image_prompt_embeds.shape | |
| image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
| image_prompt_embeds = image_prompt_embeds.view( | |
| bs_embed * num_samples, seq_len, -1 | |
| ) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat( | |
| 1, num_samples, 1 | |
| ) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.view( | |
| bs_embed * num_samples, seq_len, -1 | |
| ) | |
| print("CLIP Strength is {}".format(clip_strength)) | |
| image_prompt_embeds *= clip_strength | |
| uncond_image_prompt_embeds *= clip_strength | |
| with torch.inference_mode(): | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = self.pipe.encode_prompt( | |
| prompt, | |
| num_images_per_prompt=num_samples, | |
| do_classifier_free_guidance=True, | |
| negative_prompt=negative_prompt, | |
| ) | |
| prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1) | |
| negative_prompt_embeds = torch.cat( | |
| [negative_prompt_embeds, uncond_image_prompt_embeds], dim=1 | |
| ) | |
| self.generator = get_generator(seed, self.device) | |
| images = self.pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| num_inference_steps=num_inference_steps, | |
| generator=self.generator, | |
| **kwargs, | |
| ).images | |
| return images | |
| def generate_parametric_edits( | |
| self, | |
| pil_image, | |
| edit_mlps: dict[torch.nn.Module, float], | |
| prompt=None, | |
| negative_prompt=None, | |
| scale=1.0, | |
| num_samples=4, | |
| seed=None, | |
| num_inference_steps=30, | |
| neg_content_emb=None, | |
| neg_content_prompt=None, | |
| neg_content_scale=1.0, | |
| **kwargs, | |
| ): | |
| self.set_scale(scale) | |
| num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) | |
| if prompt is None: | |
| prompt = "best quality, high quality" | |
| if negative_prompt is None: | |
| negative_prompt = ( | |
| "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| ) | |
| if not isinstance(prompt, List): | |
| prompt = [prompt] * num_prompts | |
| if not isinstance(negative_prompt, List): | |
| negative_prompt = [negative_prompt] * num_prompts | |
| if neg_content_emb is None: | |
| if neg_content_prompt is not None: | |
| with torch.inference_mode(): | |
| ( | |
| prompt_embeds_, # torch.Size([1, 77, 2048]) | |
| negative_prompt_embeds_, | |
| pooled_prompt_embeds_, # torch.Size([1, 1280]) | |
| negative_pooled_prompt_embeds_, | |
| ) = self.pipe.encode_prompt( | |
| neg_content_prompt, | |
| num_images_per_prompt=num_samples, | |
| do_classifier_free_guidance=True, | |
| negative_prompt=negative_prompt, | |
| ) | |
| pooled_prompt_embeds_ *= neg_content_scale | |
| else: | |
| pooled_prompt_embeds_ = neg_content_emb | |
| else: | |
| pooled_prompt_embeds_ = None | |
| image_prompt_embeds, uncond_image_prompt_embeds = self.generate_image_edit_dir( | |
| pil_image, content_prompt_embeds=pooled_prompt_embeds_, edit_mlps=edit_mlps | |
| ) | |
| bs_embed, seq_len, _ = image_prompt_embeds.shape | |
| image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
| image_prompt_embeds = image_prompt_embeds.view( | |
| bs_embed * num_samples, seq_len, -1 | |
| ) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat( | |
| 1, num_samples, 1 | |
| ) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.view( | |
| bs_embed * num_samples, seq_len, -1 | |
| ) | |
| with torch.inference_mode(): | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = self.pipe.encode_prompt( | |
| prompt, | |
| num_images_per_prompt=num_samples, | |
| do_classifier_free_guidance=True, | |
| negative_prompt=negative_prompt, | |
| ) | |
| prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1) | |
| negative_prompt_embeds = torch.cat( | |
| [negative_prompt_embeds, uncond_image_prompt_embeds], dim=1 | |
| ) | |
| self.generator = get_generator(seed, self.device) | |
| images = self.pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| num_inference_steps=num_inference_steps, | |
| generator=self.generator, | |
| **kwargs, | |
| ).images | |
| return images | |
| def generate_edit( | |
| self, | |
| start_image, | |
| pil_image, | |
| pil_image2, | |
| prompt=None, | |
| negative_prompt=None, | |
| scale=1.0, | |
| num_samples=4, | |
| seed=None, | |
| num_inference_steps=30, | |
| neg_content_emb=None, | |
| neg_content_prompt=None, | |
| neg_content_scale=1.0, | |
| edit_strength=1.0, | |
| **kwargs, | |
| ): | |
| self.set_scale(scale) | |
| num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) | |
| if prompt is None: | |
| prompt = "best quality, high quality" | |
| if negative_prompt is None: | |
| negative_prompt = ( | |
| "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| ) | |
| if not isinstance(prompt, List): | |
| prompt = [prompt] * num_prompts | |
| if not isinstance(negative_prompt, List): | |
| negative_prompt = [negative_prompt] * num_prompts | |
| if neg_content_emb is None: | |
| if neg_content_prompt is not None: | |
| with torch.inference_mode(): | |
| ( | |
| prompt_embeds_, # torch.Size([1, 77, 2048]) | |
| negative_prompt_embeds_, | |
| pooled_prompt_embeds_, # torch.Size([1, 1280]) | |
| negative_pooled_prompt_embeds_, | |
| ) = self.pipe.encode_prompt( | |
| neg_content_prompt, | |
| num_images_per_prompt=num_samples, | |
| do_classifier_free_guidance=True, | |
| negative_prompt=negative_prompt, | |
| ) | |
| pooled_prompt_embeds_ *= neg_content_scale | |
| else: | |
| pooled_prompt_embeds_ = neg_content_emb | |
| else: | |
| pooled_prompt_embeds_ = None | |
| image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_edit_dir( | |
| start_image, | |
| pil_image, | |
| pil_image2, | |
| content_prompt_embeds=pooled_prompt_embeds_, | |
| edit_strength=edit_strength, | |
| ) | |
| bs_embed, seq_len, _ = image_prompt_embeds.shape | |
| image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
| image_prompt_embeds = image_prompt_embeds.view( | |
| bs_embed * num_samples, seq_len, -1 | |
| ) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat( | |
| 1, num_samples, 1 | |
| ) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.view( | |
| bs_embed * num_samples, seq_len, -1 | |
| ) | |
| with torch.inference_mode(): | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = self.pipe.encode_prompt( | |
| prompt, | |
| num_images_per_prompt=num_samples, | |
| do_classifier_free_guidance=True, | |
| negative_prompt=negative_prompt, | |
| ) | |
| prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1) | |
| negative_prompt_embeds = torch.cat( | |
| [negative_prompt_embeds, uncond_image_prompt_embeds], dim=1 | |
| ) | |
| self.generator = get_generator(seed, self.device) | |
| images = self.pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| num_inference_steps=num_inference_steps, | |
| generator=self.generator, | |
| **kwargs, | |
| ).images | |
| return images | |
| class IPAdapterPlus(IPAdapter): | |
| """IP-Adapter with fine-grained features""" | |
| def init_proj(self): | |
| image_proj_model = Resampler( | |
| dim=self.pipe.unet.config.cross_attention_dim, | |
| depth=4, | |
| dim_head=64, | |
| heads=12, | |
| num_queries=self.num_tokens, | |
| embedding_dim=self.image_encoder.config.hidden_size, | |
| output_dim=self.pipe.unet.config.cross_attention_dim, | |
| ff_mult=4, | |
| ).to(self.device, dtype=torch.float16) | |
| return image_proj_model | |
| def get_image_embeds(self, pil_image=None, clip_image_embeds=None): | |
| if isinstance(pil_image, Image.Image): | |
| pil_image = [pil_image] | |
| clip_image = self.clip_image_processor( | |
| images=pil_image, return_tensors="pt" | |
| ).pixel_values | |
| clip_image = clip_image.to(self.device, dtype=torch.float16) | |
| clip_image_embeds = self.image_encoder( | |
| clip_image, output_hidden_states=True | |
| ).hidden_states[-2] | |
| image_prompt_embeds = self.image_proj_model(clip_image_embeds) | |
| uncond_clip_image_embeds = self.image_encoder( | |
| torch.zeros_like(clip_image), output_hidden_states=True | |
| ).hidden_states[-2] | |
| uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds) | |
| return image_prompt_embeds, uncond_image_prompt_embeds | |
| class IPAdapterFull(IPAdapterPlus): | |
| """IP-Adapter with full features""" | |
| def init_proj(self): | |
| image_proj_model = MLPProjModel( | |
| cross_attention_dim=self.pipe.unet.config.cross_attention_dim, | |
| clip_embeddings_dim=self.image_encoder.config.hidden_size, | |
| ).to(self.device, dtype=torch.float16) | |
| return image_proj_model | |
| class IPAdapterPlusXL(IPAdapter): | |
| """SDXL""" | |
| def init_proj(self): | |
| image_proj_model = Resampler( | |
| dim=1280, | |
| depth=4, | |
| dim_head=64, | |
| heads=20, | |
| num_queries=self.num_tokens, | |
| embedding_dim=self.image_encoder.config.hidden_size, | |
| output_dim=self.pipe.unet.config.cross_attention_dim, | |
| ff_mult=4, | |
| ).to(self.device, dtype=torch.float16) | |
| return image_proj_model | |
| def get_image_embeds(self, pil_image): | |
| if isinstance(pil_image, Image.Image): | |
| pil_image = [pil_image] | |
| clip_image = self.clip_image_processor( | |
| images=pil_image, return_tensors="pt" | |
| ).pixel_values | |
| clip_image = clip_image.to(self.device, dtype=torch.float16) | |
| clip_image_embeds = self.image_encoder( | |
| clip_image, output_hidden_states=True | |
| ).hidden_states[-2] | |
| image_prompt_embeds = self.image_proj_model(clip_image_embeds) | |
| uncond_clip_image_embeds = self.image_encoder( | |
| torch.zeros_like(clip_image), output_hidden_states=True | |
| ).hidden_states[-2] | |
| uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds) | |
| return image_prompt_embeds, uncond_image_prompt_embeds | |
| def generate( | |
| self, | |
| pil_image, | |
| prompt=None, | |
| negative_prompt=None, | |
| scale=1.0, | |
| num_samples=4, | |
| seed=None, | |
| num_inference_steps=30, | |
| **kwargs, | |
| ): | |
| self.set_scale(scale) | |
| num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) | |
| if prompt is None: | |
| prompt = "best quality, high quality" | |
| if negative_prompt is None: | |
| negative_prompt = ( | |
| "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| ) | |
| if not isinstance(prompt, List): | |
| prompt = [prompt] * num_prompts | |
| if not isinstance(negative_prompt, List): | |
| negative_prompt = [negative_prompt] * num_prompts | |
| image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds( | |
| pil_image | |
| ) | |
| bs_embed, seq_len, _ = image_prompt_embeds.shape | |
| image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
| image_prompt_embeds = image_prompt_embeds.view( | |
| bs_embed * num_samples, seq_len, -1 | |
| ) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat( | |
| 1, num_samples, 1 | |
| ) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.view( | |
| bs_embed * num_samples, seq_len, -1 | |
| ) | |
| with torch.inference_mode(): | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = self.pipe.encode_prompt( | |
| prompt, | |
| num_images_per_prompt=num_samples, | |
| do_classifier_free_guidance=True, | |
| negative_prompt=negative_prompt, | |
| ) | |
| prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1) | |
| negative_prompt_embeds = torch.cat( | |
| [negative_prompt_embeds, uncond_image_prompt_embeds], dim=1 | |
| ) | |
| generator = get_generator(seed, self.device) | |
| images = self.pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| **kwargs, | |
| ).images | |
| return images | |