Spaces:
Running
on
L4
Running
on
L4
| from dataclasses import dataclass | |
| from typing import Optional | |
| import torch | |
| from torch import nn | |
| from spar3d.models.transformers.attention import FeedForward | |
| from spar3d.models.utils import BaseModule | |
| class CrossAttention(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| kv_dim=None, | |
| num_heads=16, | |
| qkv_bias=False, | |
| attn_drop=0.0, | |
| proj_drop=0.0, | |
| ): | |
| super().__init__() | |
| self.num_heads = num_heads | |
| head_dim = dim // num_heads | |
| self.scale = head_dim**-0.5 | |
| kv_dim = dim if not kv_dim else kv_dim | |
| self.wq = nn.Linear(dim, dim, bias=qkv_bias) | |
| self.wk = nn.Linear(kv_dim, dim, bias=qkv_bias) | |
| self.wv = nn.Linear(kv_dim, dim, bias=qkv_bias) | |
| self.attn_drop = attn_drop | |
| self.proj = nn.Linear(dim, dim) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| def forward(self, x_q, x_kv): | |
| B, N_q, C = x_q.shape | |
| B, N_kv, _ = x_kv.shape | |
| # [B, N_q, C] -> [B, N_q, H, C/H] | |
| q = self.wq(x_q).reshape(B, N_q, self.num_heads, C // self.num_heads) | |
| # [B, N_kv, C] -> [B, N_kv, H, C/H] | |
| k = self.wk(x_kv).reshape(B, N_kv, self.num_heads, C // self.num_heads) | |
| v = self.wv(x_kv).reshape(B, N_kv, self.num_heads, C // self.num_heads) | |
| # attention | |
| x = torch.nn.functional.scaled_dot_product_attention( | |
| q.transpose(1, 2), | |
| k.transpose(1, 2), | |
| v.transpose(1, 2), | |
| attn_mask=None, | |
| dropout_p=self.attn_drop, | |
| scale=self.scale, | |
| ).transpose(1, 2) | |
| # [B, N_q, H, C/H] -> [B, N_q, C] | |
| x = x.reshape(B, N_q, C) | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x | |
| class BasicBlock(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| kv_dim: Optional[int] = None, | |
| num_heads: int = 16, | |
| qkv_bias: bool = False, | |
| attn_drop: float = 0.0, | |
| proj_drop: float = 0.0, | |
| ff_drop: float = 0.0, | |
| ): | |
| super().__init__() | |
| self.norm1 = nn.LayerNorm(dim) | |
| self.attn1 = CrossAttention( | |
| dim, | |
| kv_dim=dim, | |
| num_heads=num_heads, | |
| qkv_bias=qkv_bias, | |
| attn_drop=attn_drop, | |
| proj_drop=proj_drop, | |
| ) | |
| self.norm2 = nn.LayerNorm(dim) | |
| self.attn2 = CrossAttention( | |
| dim, | |
| kv_dim=kv_dim, | |
| num_heads=num_heads, | |
| qkv_bias=qkv_bias, | |
| attn_drop=attn_drop, | |
| proj_drop=proj_drop, | |
| ) | |
| self.norm3 = nn.LayerNorm(dim) | |
| self.ff = FeedForward(dim, dropout=ff_drop) | |
| def forward(self, z, x): | |
| z_norm = self.norm1(z) | |
| z = z + self.attn1(z_norm, z_norm) | |
| # TODO: do we need to have the second attention when x is None? | |
| z_norm = self.norm2(z) | |
| z = z + self.attn2(z_norm, x if x is not None else z_norm) | |
| z_norm = self.norm3(z) | |
| z = z + self.ff(z_norm) | |
| return z | |
| class SingleStreamTransformer(BaseModule): | |
| class Config(BaseModule.Config): | |
| num_attention_heads: int = 16 | |
| attention_head_dim: int = 88 | |
| in_channels: Optional[int] = None | |
| out_channels: Optional[int] = None | |
| num_layers: int = 16 | |
| dropout: float = 0.0 | |
| norm_num_groups: int = 32 | |
| cross_attention_dim: Optional[int] = None | |
| attention_bias: bool = False | |
| cfg: Config | |
| def configure(self) -> None: | |
| self.num_attention_heads = self.cfg.num_attention_heads | |
| self.attention_head_dim = self.cfg.attention_head_dim | |
| inner_dim = self.num_attention_heads * self.attention_head_dim | |
| # Define input layers | |
| self.norm = torch.nn.GroupNorm( | |
| num_groups=self.cfg.norm_num_groups, | |
| num_channels=self.cfg.in_channels, | |
| eps=1e-6, | |
| affine=True, | |
| ) | |
| self.proj_in = nn.Linear(self.cfg.in_channels, inner_dim) | |
| # Define transformers blocks | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| BasicBlock( | |
| inner_dim, | |
| kv_dim=self.cfg.cross_attention_dim, | |
| num_heads=self.num_attention_heads, | |
| qkv_bias=self.cfg.attention_bias, | |
| proj_drop=self.cfg.dropout, | |
| ff_drop=self.cfg.dropout, | |
| ) | |
| for d in range(self.cfg.num_layers) | |
| ] | |
| ) | |
| # 4. Define output layers | |
| self.proj_out = nn.Linear(inner_dim, self.cfg.in_channels) | |
| def forward(self, hidden_states, encoder_hidden_states=None, **kwargs): | |
| residual = hidden_states | |
| hidden_states = self.norm(hidden_states) | |
| hidden_states = hidden_states.permute(0, 2, 1) | |
| hidden_states = self.proj_in(hidden_states) | |
| for block in self.transformer_blocks: | |
| hidden_states = block(hidden_states, encoder_hidden_states) | |
| hidden_states = self.proj_out(hidden_states).permute(0, 2, 1).contiguous() | |
| # TODO: do we really need to add the residual? | |
| hidden_states = hidden_states + residual | |
| return hidden_states | |
| class FuseBlock(nn.Module): | |
| """ | |
| Fuse X in to Z with cross attention | |
| """ | |
| def __init__( | |
| self, | |
| dim_z: int, | |
| dim_x: int, | |
| num_heads: int = 16, | |
| qkv_bias: bool = False, | |
| attn_drop: float = 0.0, | |
| proj_drop: float = 0.0, | |
| ff_drop: float = 0.0, | |
| norm_x_input: bool = True, | |
| ): | |
| super().__init__() | |
| self.norm_x_input = norm_x_input | |
| if self.norm_x_input: | |
| self.norm_x = nn.LayerNorm(dim_x) | |
| self.attn = CrossAttention( | |
| dim_z, | |
| kv_dim=dim_x, | |
| num_heads=num_heads, | |
| qkv_bias=qkv_bias, | |
| attn_drop=attn_drop, | |
| proj_drop=proj_drop, | |
| ) | |
| self.norm_z1 = nn.LayerNorm(dim_z) | |
| self.norm_z2 = nn.LayerNorm(dim_z) | |
| self.ff = FeedForward(dim_z, dropout=ff_drop) | |
| def forward(self, z, x): | |
| # TODO: do we need to normalize x? | |
| z = z + self.attn(self.norm_z1(z), self.norm_x(x) if self.norm_x_input else x) | |
| z = z + self.ff(self.norm_z2(z)) | |
| return z | |
| def get_triplane_attention_mask(res): | |
| N = 3 * res * res | |
| attn_mask = torch.zeros(3, res, res, 3, res, res) | |
| i, j = torch.meshgrid(torch.arange(res), torch.arange(res)) | |
| attn_mask[0, i, j, 1, i, :] = 1.0 | |
| attn_mask[0, i, j, 2, j, :] = 1.0 | |
| attn_mask[1, i, j, 0, i, :] = 1.0 | |
| attn_mask[1, i, j, 2, :, j] = 1.0 | |
| attn_mask[2, i, j, 0, :, i] = 1.0 | |
| attn_mask[2, i, j, 1, :, j] = 1.0 | |
| attn_mask = attn_mask.bool() | |
| attn_bias = torch.empty_like(attn_mask, dtype=torch.float) | |
| attn_bias.masked_fill_(attn_mask, 0.0) | |
| attn_bias.masked_fill_(~attn_mask, float("-inf")) | |
| return attn_bias.reshape(N, N) | |
| class TriplaneAttention(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| resolution: int, | |
| num_heads: int = 16, | |
| qkv_bias: bool = False, | |
| attn_drop: float = 0.0, | |
| proj_drop: float = 0.0, | |
| full_attention: bool = False, | |
| ): | |
| super().__init__() | |
| self.num_heads = num_heads | |
| head_dim = dim // num_heads | |
| self.scale = head_dim**-0.5 | |
| self.wq = nn.Linear(dim, dim, bias=qkv_bias) | |
| self.wk = nn.Linear(dim, dim, bias=qkv_bias) | |
| self.wv = nn.Linear(dim, dim, bias=qkv_bias) | |
| self.attn_drop = attn_drop | |
| self.proj = nn.Linear(dim, dim) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| self.resolution = resolution | |
| self.full_attention = full_attention | |
| self.attn_mask = ( | |
| get_triplane_attention_mask(resolution) if not full_attention else None | |
| ) | |
| def forward(self, x): | |
| B, N, C = x.shape | |
| # [B, N, C] -> [B, N, H, C/H] | |
| q = self.wq(x).reshape(B, N, self.num_heads, C // self.num_heads) | |
| k = self.wk(x).reshape(B, N, self.num_heads, C // self.num_heads) | |
| v = self.wv(x).reshape(B, N, self.num_heads, C // self.num_heads) | |
| # detokenize the planes | |
| assert N == self.resolution**2 * 3 | |
| attn_bias = ( | |
| self.attn_mask.to(q) | |
| .unsqueeze(0) | |
| .unsqueeze(0) | |
| .expand(B, self.num_heads, -1, -1) | |
| if not self.full_attention | |
| else None | |
| ) | |
| # full attention | |
| x = torch.nn.functional.scaled_dot_product_attention( | |
| q.transpose(1, 2), | |
| k.transpose(1, 2), | |
| v.transpose(1, 2), | |
| attn_mask=attn_bias, | |
| dropout_p=self.attn_drop, | |
| scale=self.scale, | |
| ).transpose(1, 2) | |
| # [B, N_q, H, C/H] -> [B, N_q, C] | |
| x = x.reshape(B, N, C) | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x | |
| class TwoStreamBlock(nn.Module): | |
| def __init__( | |
| self, | |
| dim_latent: int, | |
| dim_input: int, | |
| num_basic_blocks: int = 4, | |
| num_heads: int = 16, | |
| qkv_bias: bool = False, | |
| attn_drop: float = 0.0, | |
| proj_drop: float = 0.0, | |
| ff_drop: float = 0.0, | |
| norm_x_input: bool = True, | |
| dim_cross: Optional[int] = None, | |
| ): | |
| super().__init__() | |
| # Define the fuse block that fuse the input into the latent | |
| self.fuse_block_in = FuseBlock( | |
| dim_latent, | |
| dim_input, | |
| num_heads=num_heads, | |
| qkv_bias=qkv_bias, | |
| attn_drop=attn_drop, | |
| proj_drop=proj_drop, | |
| ff_drop=ff_drop, | |
| norm_x_input=norm_x_input, | |
| ) | |
| # Define the transformer block that process the latent | |
| self.transformer_block = nn.ModuleList( | |
| [ | |
| BasicBlock( | |
| dim_latent, | |
| kv_dim=dim_cross, | |
| num_heads=num_heads, | |
| qkv_bias=qkv_bias, | |
| proj_drop=proj_drop, | |
| ff_drop=ff_drop, | |
| ) | |
| for _ in range(num_basic_blocks) | |
| ] | |
| ) | |
| # Define the fuse block that fuse the latent into the input | |
| self.fuse_block_out = FuseBlock( | |
| dim_input, | |
| dim_latent, | |
| num_heads=num_heads, | |
| qkv_bias=qkv_bias, | |
| attn_drop=attn_drop, | |
| proj_drop=proj_drop, | |
| ff_drop=ff_drop, | |
| norm_x_input=norm_x_input, | |
| ) | |
| def forward(self, latent, input, cross_input): | |
| latent = self.fuse_block_in(latent, input) | |
| for block in self.transformer_block: | |
| latent = block(latent, cross_input) | |
| input = self.fuse_block_out(input, latent) | |
| return latent, input | |
| class TwoStreamInterleaveTransformer(BaseModule): | |
| class Config(BaseModule.Config): | |
| num_attention_heads: int = 16 | |
| attention_head_dim: int = 64 | |
| raw_triplane_channels: int = 1024 | |
| triplane_channels: int = 1024 | |
| raw_image_channels: int = 1024 | |
| num_latents: int = 1792 | |
| num_blocks: int = 4 | |
| num_basic_blocks: int = 3 | |
| dropout: float = 0.0 | |
| latent_init_std: float = 0.02 | |
| norm_num_groups: int = 32 | |
| attention_bias: bool = False | |
| norm_x_input: bool = False | |
| cross_attention_dim: int = 1024 | |
| mix_latent: bool = True | |
| cfg: Config | |
| def configure(self) -> None: | |
| self.mix_latent = self.cfg.mix_latent | |
| # Define the dimensions | |
| self.num_attention_heads = self.cfg.num_attention_heads | |
| self.attention_head_dim = self.cfg.attention_head_dim | |
| self.num_latents = self.cfg.num_latents | |
| self.latent_dim = self.num_attention_heads * self.attention_head_dim | |
| # Define input layers | |
| if self.cfg.norm_num_groups > 0: | |
| self.norm_triplane = torch.nn.GroupNorm( | |
| num_groups=self.cfg.norm_num_groups, | |
| num_channels=self.cfg.raw_triplane_channels, | |
| eps=1e-6, | |
| affine=True, | |
| ) | |
| else: | |
| self.norm_triplane = nn.LayerNorm(self.cfg.raw_triplane_channels) | |
| self.proj_triplane = nn.Linear( | |
| self.cfg.raw_triplane_channels, self.cfg.triplane_channels | |
| ) | |
| if self.mix_latent: | |
| self.norm_image = nn.LayerNorm(self.cfg.raw_image_channels) | |
| self.proj_image = nn.Linear(self.cfg.raw_image_channels, self.latent_dim) | |
| self.norm_latent = nn.LayerNorm(self.latent_dim) | |
| self.proj_latent = nn.Linear(self.latent_dim, self.latent_dim) | |
| # Define the latents | |
| self.latent_init = nn.Parameter( | |
| torch.zeros(1, self.num_latents, self.latent_dim) | |
| ) | |
| nn.init.normal_(self.latent_init, std=self.cfg.latent_init_std) | |
| # Define the transformer blocks | |
| self.main_blocks = nn.ModuleList( | |
| [ | |
| TwoStreamBlock( | |
| self.latent_dim, | |
| self.cfg.triplane_channels, | |
| num_basic_blocks=self.cfg.num_basic_blocks, | |
| num_heads=self.num_attention_heads, | |
| qkv_bias=self.cfg.attention_bias, | |
| proj_drop=self.cfg.dropout, | |
| ff_drop=self.cfg.dropout, | |
| norm_x_input=self.cfg.norm_x_input, | |
| dim_cross=self.cfg.cross_attention_dim, | |
| ) | |
| for _ in range(self.cfg.num_blocks) | |
| ] | |
| ) | |
| # 4. Define output layers | |
| self.proj_out = nn.Linear( | |
| self.cfg.triplane_channels, self.cfg.raw_triplane_channels | |
| ) | |
| def forward(self, hidden_states, encoder_hidden_states, **kwargs): | |
| # hidden_states: [B, triplane_dim, N_triplane] is triplane tokens | |
| # encoder_hidden_states: [B, N_image, image_dim] is the image tokens | |
| if isinstance(self.norm_triplane, nn.GroupNorm): | |
| triplane_tokens = self.norm_triplane(hidden_states) | |
| triplane_tokens = triplane_tokens.permute( | |
| 0, 2, 1 | |
| ) # [B, N_triplane, triplane_dim] | |
| elif isinstance(self.norm_triplane, nn.LayerNorm): | |
| triplane_tokens = self.norm_triplane(hidden_states.permute(0, 2, 1)) | |
| else: | |
| raise ValueError("Unknown normalization layer") | |
| triplane_tokens = self.proj_triplane(triplane_tokens) | |
| if self.mix_latent: | |
| image_tokens = self.norm_image( | |
| encoder_hidden_states | |
| ) # [B, N_image, image_dim] | |
| image_tokens = self.proj_image(image_tokens) | |
| init_latents = self.latent_init.expand( | |
| hidden_states.shape[0], -1, -1 | |
| ) # [B, N_latent_init, latent_dim] | |
| init_latents = self.norm_latent(init_latents) | |
| init_latents = self.proj_latent(init_latents) | |
| if self.mix_latent: | |
| latent_tokens = torch.cat( | |
| [image_tokens, init_latents], dim=1 | |
| ) # [B, N_latent, latent_dim] | |
| else: | |
| latent_tokens = init_latents | |
| # forward the main blocks | |
| for block in self.main_blocks: | |
| latent_tokens, triplane_tokens = block( | |
| latent_tokens, triplane_tokens, encoder_hidden_states | |
| ) | |
| # project the triplane tokens back to the original dimension | |
| triplane_tokens = self.proj_out(triplane_tokens).permute(0, 2, 1).contiguous() | |
| triplane_tokens = triplane_tokens + hidden_states | |
| return triplane_tokens | |