Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 12,118 Bytes
			
			| 9b2107c | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 | import copy
from abc import abstractmethod
from typing import Dict, Tuple
import torch
from coqpit import Coqpit
from torch import nn
from TTS.tts.layers.losses import TacotronLoss
from TTS.tts.models.base_tts import BaseTTS
from TTS.tts.utils.helpers import sequence_mask
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
from TTS.utils.generic_utils import format_aux_input
from TTS.utils.io import load_fsspec
from TTS.utils.training import gradual_training_scheduler
class BaseTacotron(BaseTTS):
    """Base class shared by Tacotron and Tacotron2"""
    def __init__(
        self,
        config: "TacotronConfig",
        ap: "AudioProcessor",
        tokenizer: "TTSTokenizer",
        speaker_manager: SpeakerManager = None,
    ):
        super().__init__(config, ap, tokenizer, speaker_manager)
        # pass all config fields as class attributes
        for key in config:
            setattr(self, key, config[key])
        # layers
        self.embedding = None
        self.encoder = None
        self.decoder = None
        self.postnet = None
        # init tensors
        self.embedded_speakers = None
        self.embedded_speakers_projected = None
        # global style token
        if self.gst and self.use_gst:
            self.decoder_in_features += self.gst.gst_embedding_dim  # add gst embedding dim
            self.gst_layer = None
        # Capacitron
        if self.capacitron_vae and self.use_capacitron_vae:
            self.decoder_in_features += self.capacitron_vae.capacitron_VAE_embedding_dim  # add capacitron embedding dim
            self.capacitron_vae_layer = None
        # additional layers
        self.decoder_backward = None
        self.coarse_decoder = None
    @staticmethod
    def _format_aux_input(aux_input: Dict) -> Dict:
        """Set missing fields to their default values"""
        if aux_input:
            return format_aux_input({"d_vectors": None, "speaker_ids": None}, aux_input)
        return None
    #############################
    # INIT FUNCTIONS
    #############################
    def _init_backward_decoder(self):
        """Init the backward decoder for Forward-Backward decoding."""
        self.decoder_backward = copy.deepcopy(self.decoder)
    def _init_coarse_decoder(self):
        """Init the coarse decoder for Double-Decoder Consistency."""
        self.coarse_decoder = copy.deepcopy(self.decoder)
        self.coarse_decoder.r_init = self.ddc_r
        self.coarse_decoder.set_r(self.ddc_r)
    #############################
    # CORE FUNCTIONS
    #############################
    @abstractmethod
    def forward(self):
        pass
    @abstractmethod
    def inference(self):
        pass
    def load_checkpoint(
        self, config, checkpoint_path, eval=False, cache=False
    ):  # pylint: disable=unused-argument, redefined-builtin
        """Load model checkpoint and set up internals.
        Args:
            config (Coqpi): model configuration.
            checkpoint_path (str): path to checkpoint file.
            eval (bool, optional): whether to load model for evaluation.
            cache (bool, optional): If True, cache the file locally for subsequent calls. It is cached under `get_user_data_dir()/tts_cache`. Defaults to False.
        """
        state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache)
        self.load_state_dict(state["model"])
        # TODO: set r in run-time by taking it from the new config
        if "r" in state:
            # set r from the state (for compatibility with older checkpoints)
            self.decoder.set_r(state["r"])
        elif "config" in state:
            # set r from config used at training time (for inference)
            self.decoder.set_r(state["config"]["r"])
        else:
            # set r from the new config (for new-models)
            self.decoder.set_r(config.r)
        if eval:
            self.eval()
            print(f" > Model's reduction rate `r` is set to: {self.decoder.r}")
            assert not self.training
    def get_criterion(self) -> nn.Module:
        """Get the model criterion used in training."""
        return TacotronLoss(self.config)
    @staticmethod
    def init_from_config(config: Coqpit):
        """Initialize model from config."""
        from TTS.utils.audio import AudioProcessor
        ap = AudioProcessor.init_from_config(config)
        tokenizer = TTSTokenizer.init_from_config(config)
        speaker_manager = SpeakerManager.init_from_config(config)
        return BaseTacotron(config, ap, tokenizer, speaker_manager)
    ##########################
    # TEST AND LOG FUNCTIONS #
    ##########################
    def test_run(self, assets: Dict) -> Tuple[Dict, Dict]:
        """Generic test run for `tts` models used by `Trainer`.
        You can override this for a different behaviour.
        Args:
            assets (dict): A dict of training assets. For `tts` models, it must include `{'audio_processor': ap}`.
        Returns:
            Tuple[Dict, Dict]: Test figures and audios to be projected to Tensorboard.
        """
        print(" | > Synthesizing test sentences.")
        test_audios = {}
        test_figures = {}
        test_sentences = self.config.test_sentences
        aux_inputs = self._get_test_aux_input()
        for idx, sen in enumerate(test_sentences):
            outputs_dict = synthesis(
                self,
                sen,
                self.config,
                "cuda" in str(next(self.parameters()).device),
                speaker_id=aux_inputs["speaker_id"],
                d_vector=aux_inputs["d_vector"],
                style_wav=aux_inputs["style_wav"],
                use_griffin_lim=True,
                do_trim_silence=False,
            )
            test_audios["{}-audio".format(idx)] = outputs_dict["wav"]
            test_figures["{}-prediction".format(idx)] = plot_spectrogram(
                outputs_dict["outputs"]["model_outputs"], self.ap, output_fig=False
            )
            test_figures["{}-alignment".format(idx)] = plot_alignment(
                outputs_dict["outputs"]["alignments"], output_fig=False
            )
        return {"figures": test_figures, "audios": test_audios}
    def test_log(
        self, outputs: dict, logger: "Logger", assets: dict, steps: int  # pylint: disable=unused-argument
    ) -> None:
        logger.test_audios(steps, outputs["audios"], self.ap.sample_rate)
        logger.test_figures(steps, outputs["figures"])
    #############################
    # COMMON COMPUTE FUNCTIONS
    #############################
    def compute_masks(self, text_lengths, mel_lengths):
        """Compute masks  against sequence paddings."""
        # B x T_in_max (boolean)
        input_mask = sequence_mask(text_lengths)
        output_mask = None
        if mel_lengths is not None:
            max_len = mel_lengths.max()
            r = self.decoder.r
            max_len = max_len + (r - (max_len % r)) if max_len % r > 0 else max_len
            output_mask = sequence_mask(mel_lengths, max_len=max_len)
        return input_mask, output_mask
    def _backward_pass(self, mel_specs, encoder_outputs, mask):
        """Run backwards decoder"""
        decoder_outputs_b, alignments_b, _ = self.decoder_backward(
            encoder_outputs, torch.flip(mel_specs, dims=(1,)), mask
        )
        decoder_outputs_b = decoder_outputs_b.transpose(1, 2).contiguous()
        return decoder_outputs_b, alignments_b
    def _coarse_decoder_pass(self, mel_specs, encoder_outputs, alignments, input_mask):
        """Double Decoder Consistency"""
        T = mel_specs.shape[1]
        if T % self.coarse_decoder.r > 0:
            padding_size = self.coarse_decoder.r - (T % self.coarse_decoder.r)
            mel_specs = torch.nn.functional.pad(mel_specs, (0, 0, 0, padding_size, 0, 0))
        decoder_outputs_backward, alignments_backward, _ = self.coarse_decoder(
            encoder_outputs.detach(), mel_specs, input_mask
        )
        # scale_factor = self.decoder.r_init / self.decoder.r
        alignments_backward = torch.nn.functional.interpolate(
            alignments_backward.transpose(1, 2),
            size=alignments.shape[1],
            mode="nearest",
        ).transpose(1, 2)
        decoder_outputs_backward = decoder_outputs_backward.transpose(1, 2)
        decoder_outputs_backward = decoder_outputs_backward[:, :T, :]
        return decoder_outputs_backward, alignments_backward
    #############################
    # EMBEDDING FUNCTIONS
    #############################
    def compute_gst(self, inputs, style_input, speaker_embedding=None):
        """Compute global style token"""
        if isinstance(style_input, dict):
            # multiply each style token with a weight
            query = torch.zeros(1, 1, self.gst.gst_embedding_dim // 2).type_as(inputs)
            if speaker_embedding is not None:
                query = torch.cat([query, speaker_embedding.reshape(1, 1, -1)], dim=-1)
            _GST = torch.tanh(self.gst_layer.style_token_layer.style_tokens)
            gst_outputs = torch.zeros(1, 1, self.gst.gst_embedding_dim).type_as(inputs)
            for k_token, v_amplifier in style_input.items():
                key = _GST[int(k_token)].unsqueeze(0).expand(1, -1, -1)
                gst_outputs_att = self.gst_layer.style_token_layer.attention(query, key)
                gst_outputs = gst_outputs + gst_outputs_att * v_amplifier
        elif style_input is None:
            # ignore style token and return zero tensor
            gst_outputs = torch.zeros(1, 1, self.gst.gst_embedding_dim).type_as(inputs)
        else:
            # compute style tokens
            gst_outputs = self.gst_layer(style_input, speaker_embedding)  # pylint: disable=not-callable
        inputs = self._concat_speaker_embedding(inputs, gst_outputs)
        return inputs
    def compute_capacitron_VAE_embedding(self, inputs, reference_mel_info, text_info=None, speaker_embedding=None):
        """Capacitron Variational Autoencoder"""
        (
            VAE_outputs,
            posterior_distribution,
            prior_distribution,
            capacitron_beta,
        ) = self.capacitron_vae_layer(
            reference_mel_info,
            text_info,
            speaker_embedding,  # pylint: disable=not-callable
        )
        VAE_outputs = VAE_outputs.to(inputs.device)
        encoder_output = self._concat_speaker_embedding(
            inputs, VAE_outputs
        )  # concatenate to the output of the basic tacotron encoder
        return (
            encoder_output,
            posterior_distribution,
            prior_distribution,
            capacitron_beta,
        )
    @staticmethod
    def _add_speaker_embedding(outputs, embedded_speakers):
        embedded_speakers_ = embedded_speakers.expand(outputs.size(0), outputs.size(1), -1)
        outputs = outputs + embedded_speakers_
        return outputs
    @staticmethod
    def _concat_speaker_embedding(outputs, embedded_speakers):
        embedded_speakers_ = embedded_speakers.expand(outputs.size(0), outputs.size(1), -1)
        outputs = torch.cat([outputs, embedded_speakers_], dim=-1)
        return outputs
    #############################
    # CALLBACKS
    #############################
    def on_epoch_start(self, trainer):
        """Callback for setting values wrt gradual training schedule.
        Args:
            trainer (TrainerTTS): TTS trainer object that is used to train this model.
        """
        if self.gradual_training:
            r, trainer.config.batch_size = gradual_training_scheduler(trainer.total_steps_done, trainer.config)
            trainer.config.r = r
            self.decoder.set_r(r)
            if trainer.config.bidirectional_decoder:
                trainer.model.decoder_backward.set_r(r)
            print(f"\n > Number of output frames: {self.decoder.r}")
 | 
