Spaces:
Runtime error
Runtime error
| import math | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| def fused_leaky_relu(input, bias=None, negative_slope=0.2, scale=2**0.5): | |
| if bias is not None: | |
| rest_dim = [1] * (input.ndim - bias.ndim - 1) | |
| return ( | |
| F.leaky_relu( | |
| input + bias.view(1, bias.shape[0], *rest_dim), | |
| negative_slope=negative_slope, | |
| ) | |
| * scale | |
| ) | |
| else: | |
| return F.leaky_relu(input, negative_slope=0.2) * scale | |
| class EqualLinear(nn.Module): | |
| def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1): | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) | |
| if bias: | |
| self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) | |
| else: | |
| self.bias = None | |
| self.scale = (1 / math.sqrt(in_dim)) * lr_mul | |
| self.lr_mul = lr_mul | |
| def forward(self, input): | |
| out = F.linear(input, self.weight * self.scale) | |
| out = fused_leaky_relu(out, self.bias * self.lr_mul) | |
| return out | |
| class RandomLatentConverter(nn.Module): | |
| def __init__(self, channels): | |
| super().__init__() | |
| self.layers = nn.Sequential( | |
| *[EqualLinear(channels, channels, lr_mul=0.1) for _ in range(5)], nn.Linear(channels, channels) | |
| ) | |
| self.channels = channels | |
| def forward(self, ref): | |
| r = torch.randn(ref.shape[0], self.channels, device=ref.device) | |
| y = self.layers(r) | |
| return y | |
| if __name__ == "__main__": | |
| model = RandomLatentConverter(512) | |
| model(torch.randn(5, 512)) | |