Spaces:
Running
Running
Update models/tag2text.py
Browse files- models/tag2text.py +407 -349
models/tag2text.py
CHANGED
|
@@ -1,429 +1,487 @@
|
|
| 1 |
'''
|
| 2 |
-
* Tag2Text
|
| 3 |
* Written by Xinyu Huang
|
| 4 |
'''
|
|
|
|
|
|
|
|
|
|
| 5 |
import warnings
|
| 6 |
-
warnings.filterwarnings("ignore")
|
| 7 |
|
| 8 |
-
from models.vit import VisionTransformer, interpolate_pos_embed
|
| 9 |
-
from models.swin_transformer import SwinTransformer, interpolate_relative_pos_embed
|
| 10 |
-
from models.med import BertConfig, BertModel, BertLMHeadModel
|
| 11 |
-
from transformers import BertTokenizer
|
| 12 |
-
|
| 13 |
-
import torch
|
| 14 |
from torch import nn
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
import
|
| 18 |
-
from
|
| 19 |
-
from timm.models.hub import download_cached_file
|
| 20 |
-
from data.tag_class import tra_array
|
| 21 |
-
import json
|
| 22 |
-
import math
|
| 23 |
-
import numpy as np
|
| 24 |
|
| 25 |
-
|
| 26 |
-
with open(rpath, 'r') as f:
|
| 27 |
-
return json.load(f)
|
| 28 |
|
| 29 |
-
|
| 30 |
-
# 127: "quarter"; 2961: "back"; 3351: "two"; 3265: "three"; 3338: "four"; 3355: "five"; 3359: "one"
|
| 31 |
-
delete_tag_index = [127,2961, 3351, 3265, 3338, 3355, 3359]
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
class Tag2Text_Caption(nn.Module):
|
| 39 |
-
def __init__(self,
|
| 40 |
-
med_config = 'configs/med_config.json',
|
| 41 |
-
image_size = 384,
|
| 42 |
-
vit = 'base',
|
| 43 |
-
vit_grad_ckpt = False,
|
| 44 |
-
vit_ckpt_layer = 0,
|
| 45 |
-
prompt = 'a picture of ',
|
| 46 |
-
threshold = 0.68,
|
| 47 |
-
):
|
| 48 |
-
"""
|
| 49 |
Args:
|
| 50 |
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
| 51 |
image_size (int): input image size
|
| 52 |
vit (str): model size of vision transformer
|
| 53 |
-
|
|
|
|
|
|
|
| 54 |
super().__init__()
|
| 55 |
|
| 56 |
-
|
|
|
|
| 57 |
if image_size == 224:
|
| 58 |
-
vision_config_path = 'configs/swin/config_swinB_224.json'
|
| 59 |
elif image_size == 384:
|
| 60 |
-
vision_config_path = 'configs/swin/config_swinB_384.json'
|
| 61 |
vision_config = read_json(vision_config_path)
|
| 62 |
assert image_size == vision_config['image_res']
|
| 63 |
# assert config['patch_size'] == 32
|
| 64 |
vision_width = vision_config['vision_width']
|
| 65 |
|
| 66 |
-
self.visual_encoder = SwinTransformer(
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
else:
|
| 82 |
-
self.visual_encoder, vision_width = create_vit(
|
|
|
|
| 83 |
|
|
|
|
|
|
|
| 84 |
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
-
# create
|
| 88 |
decoder_config = BertConfig.from_json_file(med_config)
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
encoder_config = BertConfig.from_json_file(med_config)
|
| 94 |
encoder_config.encoder_width = vision_width
|
| 95 |
-
self.tag_encoder = BertModel(config=encoder_config,
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
self.prompt = prompt
|
| 98 |
-
self.prompt_length = len(self.tokenizer(self.prompt).input_ids)-1
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
self.num_class = 3429
|
| 103 |
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
| 105 |
q2l_config.encoder_width = vision_width
|
| 106 |
-
self.
|
| 107 |
-
|
|
|
|
| 108 |
self.label_embed = nn.Embedding(self.num_class, q2l_config.hidden_size)
|
| 109 |
-
self.fc =
|
|
|
|
|
|
|
| 110 |
self.del_selfattention()
|
| 111 |
|
| 112 |
-
|
| 113 |
-
self.
|
|
|
|
| 114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
self.class_threshold = torch.ones(self.num_class) * self.threshold
|
| 116 |
for key,value in tag_thrshold.items():
|
| 117 |
self.class_threshold[key] = value
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
def del_selfattention(self):
|
| 120 |
-
del self.
|
| 121 |
-
for layer in self.
|
| 122 |
del layer.attention
|
| 123 |
-
|
| 124 |
-
def generate(self,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
image_embeds = self.visual_encoder(image)
|
| 126 |
-
image_atts = torch.ones(image_embeds.size()[:-1],
|
|
|
|
| 127 |
|
| 128 |
-
|
| 129 |
if tag_input == None:
|
| 130 |
-
|
| 131 |
-
|
| 132 |
|
| 133 |
bs = image_spatial_embeds.shape[0]
|
| 134 |
-
label_embed = self.label_embed.weight.unsqueeze(0).repeat(bs,1,1)
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
targets = torch.where(
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
tag = targets.cpu().numpy()
|
| 148 |
-
|
| 149 |
-
|
|
|
|
|
|
|
| 150 |
tag_input = []
|
| 151 |
for b in range(bs):
|
| 152 |
index = np.argwhere(tag[b] == 1)
|
| 153 |
-
token = self.
|
| 154 |
-
tag_input.append(' | '.join(token))
|
| 155 |
-
|
| 156 |
-
|
|
|
|
|
|
|
| 157 |
if not sample:
|
| 158 |
-
image_embeds = image_embeds.repeat_interleave(num_beams,dim=0)
|
| 159 |
tag_input_temp = []
|
| 160 |
for tag in tag_input:
|
| 161 |
for i in range(num_beams):
|
| 162 |
tag_input_temp.append(tag)
|
| 163 |
tag_input = tag_input_temp
|
| 164 |
|
|
|
|
|
|
|
| 165 |
|
| 166 |
-
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
encoder_input_ids = tag_input_tokenzier.input_ids
|
| 169 |
-
encoder_input_ids[:,0] = self.tokenizer.enc_token_id
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
| 178 |
prompt = [self.prompt] * image.size(0)
|
| 179 |
-
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(
|
| 180 |
-
|
| 181 |
-
input_ids
|
|
|
|
| 182 |
|
| 183 |
if sample:
|
| 184 |
-
#nucleus sampling
|
| 185 |
-
model_kwargs = {
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
else:
|
| 197 |
-
#beam search
|
| 198 |
-
model_kwargs = {
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
for output in outputs:
|
| 210 |
-
caption = self.tokenizer.decode(output, skip_special_tokens=True)
|
| 211 |
captions.append(caption[len(self.prompt):])
|
| 212 |
if return_tag_predict == True:
|
| 213 |
-
|
| 214 |
-
return captions, tag_input
|
| 215 |
-
else:
|
| 216 |
-
return captions, tag_input[0:int(len(tag_input)/num_beams)]
|
| 217 |
return captions
|
| 218 |
|
| 219 |
|
| 220 |
-
|
|
|
|
| 221 |
model = Tag2Text_Caption(**kwargs)
|
| 222 |
if pretrained:
|
| 223 |
if kwargs['vit'] == 'swin_b':
|
| 224 |
-
model,msg = load_checkpoint_swinbase(model,pretrained,kwargs)
|
| 225 |
else:
|
| 226 |
-
model,msg = load_checkpoint(model,pretrained)
|
| 227 |
-
print('vit:',kwargs['vit'])
|
| 228 |
-
print('
|
| 229 |
-
return model
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
from typing import List
|
| 233 |
-
def tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, skip_key:str):
|
| 234 |
-
uninitialized_encoder_weights: List[str] = []
|
| 235 |
-
if decoder.__class__ != encoder.__class__:
|
| 236 |
-
logger.info(
|
| 237 |
-
f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized."
|
| 238 |
-
)
|
| 239 |
-
|
| 240 |
-
def tie_encoder_to_decoder_recursively(
|
| 241 |
-
decoder_pointer: nn.Module,
|
| 242 |
-
encoder_pointer: nn.Module,
|
| 243 |
-
module_name: str,
|
| 244 |
-
uninitialized_encoder_weights: List[str],
|
| 245 |
-
skip_key: str,
|
| 246 |
-
depth=0,
|
| 247 |
-
):
|
| 248 |
-
assert isinstance(decoder_pointer, nn.Module) and isinstance(
|
| 249 |
-
encoder_pointer, nn.Module
|
| 250 |
-
), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"
|
| 251 |
-
if hasattr(decoder_pointer, "weight") and skip_key not in module_name:
|
| 252 |
-
assert hasattr(encoder_pointer, "weight")
|
| 253 |
-
encoder_pointer.weight = decoder_pointer.weight
|
| 254 |
-
if hasattr(decoder_pointer, "bias"):
|
| 255 |
-
assert hasattr(encoder_pointer, "bias")
|
| 256 |
-
encoder_pointer.bias = decoder_pointer.bias
|
| 257 |
-
print(module_name+' is tied')
|
| 258 |
-
return
|
| 259 |
-
|
| 260 |
-
encoder_modules = encoder_pointer._modules
|
| 261 |
-
decoder_modules = decoder_pointer._modules
|
| 262 |
-
if len(decoder_modules) > 0:
|
| 263 |
-
assert (
|
| 264 |
-
len(encoder_modules) > 0
|
| 265 |
-
), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"
|
| 266 |
-
|
| 267 |
-
all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()])
|
| 268 |
-
encoder_layer_pos = 0
|
| 269 |
-
for name, module in decoder_modules.items():
|
| 270 |
-
if name.isdigit():
|
| 271 |
-
encoder_name = str(int(name) + encoder_layer_pos)
|
| 272 |
-
decoder_name = name
|
| 273 |
-
if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
|
| 274 |
-
encoder_modules
|
| 275 |
-
) != len(decoder_modules):
|
| 276 |
-
# this can happen if the name corresponds to the position in a list module list of layers
|
| 277 |
-
# in this case the decoder has added a cross-attention that the encoder does not have
|
| 278 |
-
# thus skip this step and subtract one layer pos from encoder
|
| 279 |
-
encoder_layer_pos -= 1
|
| 280 |
-
continue
|
| 281 |
-
elif name not in encoder_modules:
|
| 282 |
-
continue
|
| 283 |
-
elif depth > 500:
|
| 284 |
-
raise ValueError(
|
| 285 |
-
"Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
|
| 286 |
-
)
|
| 287 |
-
else:
|
| 288 |
-
decoder_name = encoder_name = name
|
| 289 |
-
tie_encoder_to_decoder_recursively(
|
| 290 |
-
decoder_modules[decoder_name],
|
| 291 |
-
encoder_modules[encoder_name],
|
| 292 |
-
module_name + "/" + name,
|
| 293 |
-
uninitialized_encoder_weights,
|
| 294 |
-
skip_key,
|
| 295 |
-
depth=depth + 1,
|
| 296 |
-
)
|
| 297 |
-
all_encoder_weights.remove(module_name + "/" + encoder_name)
|
| 298 |
-
|
| 299 |
-
uninitialized_encoder_weights += list(all_encoder_weights)
|
| 300 |
-
|
| 301 |
-
# tie weights recursively
|
| 302 |
-
tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights, skip_key)
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
class GroupWiseLinear(nn.Module):
|
| 306 |
-
# could be changed to:
|
| 307 |
-
# output = torch.einsum('ijk,zjk->ij', x, self.W)
|
| 308 |
-
# or output = torch.einsum('ijk,jk->ij', x, self.W[0])
|
| 309 |
-
def __init__(self, num_class, hidden_dim, bias=True):
|
| 310 |
-
super().__init__()
|
| 311 |
-
self.num_class = num_class
|
| 312 |
-
self.hidden_dim = hidden_dim
|
| 313 |
-
self.bias = bias
|
| 314 |
-
|
| 315 |
-
self.W = nn.Parameter(torch.Tensor(1, num_class, hidden_dim))
|
| 316 |
-
if bias:
|
| 317 |
-
self.b = nn.Parameter(torch.Tensor(1, num_class))
|
| 318 |
-
self.reset_parameters()
|
| 319 |
-
|
| 320 |
-
def reset_parameters(self):
|
| 321 |
-
stdv = 1. / math.sqrt(self.W.size(2))
|
| 322 |
-
for i in range(self.num_class):
|
| 323 |
-
self.W[0][i].data.uniform_(-stdv, stdv)
|
| 324 |
-
if self.bias:
|
| 325 |
-
for i in range(self.num_class):
|
| 326 |
-
self.b[0][i].data.uniform_(-stdv, stdv)
|
| 327 |
-
|
| 328 |
-
def forward(self, x):
|
| 329 |
-
# x: B,K,d
|
| 330 |
-
x = (self.W * x).sum(-1)
|
| 331 |
-
if self.bias:
|
| 332 |
-
x = x + self.b
|
| 333 |
-
return x
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
def init_tokenizer():
|
| 337 |
-
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
| 338 |
-
tokenizer.add_special_tokens({'bos_token':'[DEC]'})
|
| 339 |
-
tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']})
|
| 340 |
-
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]
|
| 341 |
-
return tokenizer
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0):
|
| 345 |
-
|
| 346 |
-
assert vit in ['base', 'large'], "vit parameter must be base or large"
|
| 347 |
-
if vit=='base':
|
| 348 |
-
vision_width = 768
|
| 349 |
-
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12,
|
| 350 |
-
num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
|
| 351 |
-
drop_path_rate=0 or drop_path_rate
|
| 352 |
-
)
|
| 353 |
-
elif vit=='large':
|
| 354 |
-
vision_width = 1024
|
| 355 |
-
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24,
|
| 356 |
-
num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
|
| 357 |
-
drop_path_rate=0.1 or drop_path_rate
|
| 358 |
-
)
|
| 359 |
-
return visual_encoder, vision_width
|
| 360 |
-
|
| 361 |
-
def is_url(url_or_filename):
|
| 362 |
-
parsed = urlparse(url_or_filename)
|
| 363 |
-
return parsed.scheme in ("http", "https")
|
| 364 |
-
|
| 365 |
-
def load_checkpoint(model,url_or_filename):
|
| 366 |
-
if is_url(url_or_filename):
|
| 367 |
-
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
|
| 368 |
-
checkpoint = torch.load(cached_file, map_location='cpu')
|
| 369 |
-
elif os.path.isfile(url_or_filename):
|
| 370 |
-
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
| 371 |
-
else:
|
| 372 |
-
raise RuntimeError('checkpoint url or path is invalid')
|
| 373 |
-
|
| 374 |
-
state_dict = checkpoint['model']
|
| 375 |
-
|
| 376 |
-
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
|
| 377 |
-
if 'visual_encoder_m.pos_embed' in model.state_dict().keys():
|
| 378 |
-
state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],
|
| 379 |
-
model.visual_encoder_m)
|
| 380 |
-
for key in model.state_dict().keys():
|
| 381 |
-
if key in state_dict.keys():
|
| 382 |
-
if state_dict[key].shape!=model.state_dict()[key].shape:
|
| 383 |
-
del state_dict[key]
|
| 384 |
-
|
| 385 |
-
msg = model.load_state_dict(state_dict,strict=False)
|
| 386 |
-
print('load checkpoint from %s'%url_or_filename)
|
| 387 |
-
return model,msg
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
def load_checkpoint_swinbase(model,url_or_filename,kwargs):
|
| 391 |
-
if kwargs['image_size'] == 224:
|
| 392 |
-
vision_config_path = 'configs/swin/config_swinB_224.json'
|
| 393 |
-
elif kwargs['image_size'] == 384:
|
| 394 |
-
vision_config_path = 'configs/swin/config_swinB_384.json'
|
| 395 |
-
elif kwargs['image_size'] == 480:
|
| 396 |
-
vision_config_path = 'configs/swin/config_swinB_480.json'
|
| 397 |
-
elif kwargs['image_size'] == 576:
|
| 398 |
-
vision_config_path = 'configs/swin/config_swinB_576.json'
|
| 399 |
-
elif kwargs['image_size'] == 608:
|
| 400 |
-
vision_config_path = 'configs/swin/config_swinB_608.json'
|
| 401 |
-
window_size = read_json(vision_config_path)['window_size']
|
| 402 |
-
print('--------------')
|
| 403 |
-
print(url_or_filename)
|
| 404 |
-
print('--------------')
|
| 405 |
-
if is_url(url_or_filename):
|
| 406 |
-
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
|
| 407 |
-
checkpoint = torch.load(cached_file, map_location='cpu')
|
| 408 |
-
elif os.path.isfile(url_or_filename):
|
| 409 |
-
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
| 410 |
-
else:
|
| 411 |
-
raise RuntimeError('checkpoint url or path is invalid')
|
| 412 |
-
|
| 413 |
-
state_dict = checkpoint['model']
|
| 414 |
-
|
| 415 |
-
for k in list(state_dict.keys()):
|
| 416 |
-
if 'relative_position_bias_table' in k:
|
| 417 |
-
dst_num_pos = (2 * window_size - 1) ** 2
|
| 418 |
-
state_dict[k] = interpolate_relative_pos_embed(state_dict[k], dst_num_pos, param_name=k)
|
| 419 |
-
elif ('relative_position_index' in k) or ('attn_mask' in k):
|
| 420 |
-
del state_dict[k]
|
| 421 |
-
|
| 422 |
-
msg = model.load_state_dict(state_dict,strict=False)
|
| 423 |
-
print('load checkpoint from %s'%url_or_filename)
|
| 424 |
-
return model,msg
|
| 425 |
-
|
| 426 |
-
|
| 427 |
|
| 428 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 429 |
|
|
|
|
| 1 |
'''
|
| 2 |
+
* The Recognize Anything Model (RAM) & Tag2Text Model
|
| 3 |
* Written by Xinyu Huang
|
| 4 |
'''
|
| 5 |
+
import numpy as np
|
| 6 |
+
import json
|
| 7 |
+
import torch
|
| 8 |
import warnings
|
|
|
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
from torch import nn
|
| 11 |
+
from models.bert import BertConfig, BertModel, BertLMHeadModel
|
| 12 |
+
from models.vit import VisionTransformer
|
| 13 |
+
from models.swin_transformer import SwinTransformer
|
| 14 |
+
from data.ram_tag_list_threshold import ram_class_threshold
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
from models.utils import *
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
warnings.filterwarnings("ignore")
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
class RAM(nn.Module):
|
| 21 |
+
def __init__(self,
|
| 22 |
+
med_config=f'{CONFIG_PATH}/configs/med_config.json',
|
| 23 |
+
image_size=384,
|
| 24 |
+
vit='base',
|
| 25 |
+
vit_grad_ckpt=False,
|
| 26 |
+
vit_ckpt_layer=0,
|
| 27 |
+
prompt='a picture of ',
|
| 28 |
+
threshold=0.68,
|
| 29 |
+
delete_tag_index=[],
|
| 30 |
+
tag_list=f'{CONFIG_PATH}/data/ram_tag_list.txt',
|
| 31 |
+
tag_list_chinese=f'{CONFIG_PATH}/data/ram_tag_list_chinese.txt'):
|
| 32 |
+
r""" The Recognize Anything Model (RAM) inference module.
|
| 33 |
+
RAM is a strong image tagging model, which can recognize any common category with high accuracy.
|
| 34 |
+
Described in the paper " Recognize Anything: A Strong Image Tagging Model" https://recognize-anything.github.io/
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
Args:
|
| 37 |
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
| 38 |
image_size (int): input image size
|
| 39 |
vit (str): model size of vision transformer
|
| 40 |
+
threshold (int): tagging threshold
|
| 41 |
+
delete_tag_index (list): delete some tags that may disturb captioning
|
| 42 |
+
"""
|
| 43 |
super().__init__()
|
| 44 |
|
| 45 |
+
# create image encoder
|
| 46 |
+
if vit == 'swin_b':
|
| 47 |
if image_size == 224:
|
| 48 |
+
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_224.json'
|
| 49 |
elif image_size == 384:
|
| 50 |
+
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_384.json'
|
| 51 |
vision_config = read_json(vision_config_path)
|
| 52 |
assert image_size == vision_config['image_res']
|
| 53 |
# assert config['patch_size'] == 32
|
| 54 |
vision_width = vision_config['vision_width']
|
| 55 |
|
| 56 |
+
self.visual_encoder = SwinTransformer(
|
| 57 |
+
img_size=vision_config['image_res'],
|
| 58 |
+
patch_size=4,
|
| 59 |
+
in_chans=3,
|
| 60 |
+
embed_dim=vision_config['embed_dim'],
|
| 61 |
+
depths=vision_config['depths'],
|
| 62 |
+
num_heads=vision_config['num_heads'],
|
| 63 |
+
window_size=vision_config['window_size'],
|
| 64 |
+
mlp_ratio=4.,
|
| 65 |
+
qkv_bias=True,
|
| 66 |
+
drop_rate=0.0,
|
| 67 |
+
drop_path_rate=0.1,
|
| 68 |
+
ape=False,
|
| 69 |
+
patch_norm=True,
|
| 70 |
+
use_checkpoint=False)
|
| 71 |
+
|
| 72 |
+
elif vit == 'swin_l':
|
| 73 |
+
if image_size == 224:
|
| 74 |
+
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinL_224.json'
|
| 75 |
+
elif image_size == 384:
|
| 76 |
+
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinL_384.json'
|
| 77 |
+
vision_config = read_json(vision_config_path)
|
| 78 |
+
assert image_size == vision_config['image_res']
|
| 79 |
+
# assert config['patch_size'] == 32
|
| 80 |
+
vision_width = vision_config['vision_width']
|
| 81 |
+
|
| 82 |
+
self.visual_encoder = SwinTransformer(
|
| 83 |
+
img_size=vision_config['image_res'],
|
| 84 |
+
patch_size=4,
|
| 85 |
+
in_chans=3,
|
| 86 |
+
embed_dim=vision_config['embed_dim'],
|
| 87 |
+
depths=vision_config['depths'],
|
| 88 |
+
num_heads=vision_config['num_heads'],
|
| 89 |
+
window_size=vision_config['window_size'],
|
| 90 |
+
mlp_ratio=4.,
|
| 91 |
+
qkv_bias=True,
|
| 92 |
+
drop_rate=0.0,
|
| 93 |
+
drop_path_rate=0.1,
|
| 94 |
+
ape=False,
|
| 95 |
+
patch_norm=True,
|
| 96 |
+
use_checkpoint=False)
|
| 97 |
+
|
| 98 |
else:
|
| 99 |
+
self.visual_encoder, vision_width = create_vit(
|
| 100 |
+
vit, image_size, vit_grad_ckpt, vit_ckpt_layer)
|
| 101 |
|
| 102 |
+
# create tokenzier
|
| 103 |
+
self.tokenizer = init_tokenizer()
|
| 104 |
|
| 105 |
+
# Tag2Text employ encoder-decoder architecture for image-tag-text generation: image-tag interaction encoder and image-tag-text decoder
|
| 106 |
+
# create image-tag interaction encoder
|
| 107 |
+
encoder_config = BertConfig.from_json_file(med_config)
|
| 108 |
+
encoder_config.encoder_width = 512
|
| 109 |
+
self.tag_encoder = BertModel(config=encoder_config,
|
| 110 |
+
add_pooling_layer=False)
|
| 111 |
|
| 112 |
+
# create image-tag-text decoder
|
| 113 |
decoder_config = BertConfig.from_json_file(med_config)
|
| 114 |
+
self.text_decoder = BertLMHeadModel(config=decoder_config)
|
| 115 |
+
|
| 116 |
+
self.delete_tag_index = delete_tag_index
|
| 117 |
+
self.prompt = prompt
|
| 118 |
+
self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1
|
| 119 |
+
|
| 120 |
+
# load tag list
|
| 121 |
+
self.tag_list = self.load_tag_list(tag_list)
|
| 122 |
+
self.tag_list_chinese = self.load_tag_list(tag_list_chinese)
|
| 123 |
+
|
| 124 |
+
# create image-tag recognition decoder
|
| 125 |
+
self.threshold = threshold
|
| 126 |
+
self.num_class = len(self.tag_list)
|
| 127 |
+
q2l_config = BertConfig.from_json_file(f'{CONFIG_PATH}/configs/q2l_config.json')
|
| 128 |
+
q2l_config.encoder_width = 512
|
| 129 |
+
self.tagging_head = BertModel(config=q2l_config,
|
| 130 |
+
add_pooling_layer=False)
|
| 131 |
+
self.tagging_head.resize_token_embeddings(len(self.tokenizer))
|
| 132 |
+
self.label_embed = nn.Embedding(self.num_class, q2l_config.hidden_size)
|
| 133 |
+
|
| 134 |
+
if q2l_config.hidden_size != 512:
|
| 135 |
+
self.wordvec_proj = nn.Linear(512, q2l_config.hidden_size)
|
| 136 |
+
else:
|
| 137 |
+
self.wordvec_proj = nn.Identity()
|
| 138 |
+
|
| 139 |
+
self.fc = nn.Linear(q2l_config.hidden_size, 1)
|
| 140 |
+
|
| 141 |
+
self.del_selfattention()
|
| 142 |
+
|
| 143 |
+
# share weights of the lowest 2-layer of "image-tag interaction encoder" with the "image-tag recogntion decoder"
|
| 144 |
+
tie_encoder_decoder_weights(self.tag_encoder, self.tagging_head, '',
|
| 145 |
+
' ')
|
| 146 |
+
self.image_proj = nn.Linear(vision_width, 512)
|
| 147 |
+
self.label_embed = nn.Parameter(torch.load('data/textual_label_embedding.pth',map_location='cpu').float())
|
| 148 |
+
|
| 149 |
+
# adjust thresholds for some tags
|
| 150 |
+
self.class_threshold = torch.ones(self.num_class) * self.threshold
|
| 151 |
+
for key,value in enumerate(ram_class_threshold):
|
| 152 |
+
self.class_threshold[key] = value
|
| 153 |
+
|
| 154 |
+
def load_tag_list(self, tag_list_file):
|
| 155 |
+
with open(tag_list_file, 'r') as f:
|
| 156 |
+
tag_list = f.read().splitlines()
|
| 157 |
+
tag_list = np.array(tag_list)
|
| 158 |
+
return tag_list
|
| 159 |
+
|
| 160 |
+
# delete self-attention layer of image-tag recognition decoder to reduce computation, follower Query2Label
|
| 161 |
+
def del_selfattention(self):
|
| 162 |
+
del self.tagging_head.embeddings
|
| 163 |
+
for layer in self.tagging_head.encoder.layer:
|
| 164 |
+
del layer.attention
|
| 165 |
+
|
| 166 |
+
def generate_tag(self,
|
| 167 |
+
image,
|
| 168 |
+
threshold=0.68,
|
| 169 |
+
tag_input=None,
|
| 170 |
+
):
|
| 171 |
+
|
| 172 |
+
label_embed = torch.nn.functional.relu(self.wordvec_proj(self.label_embed))
|
| 173 |
+
|
| 174 |
+
image_embeds = self.image_proj(self.visual_encoder(image))
|
| 175 |
+
image_atts = torch.ones(image_embeds.size()[:-1],
|
| 176 |
+
dtype=torch.long).to(image.device)
|
| 177 |
+
|
| 178 |
+
# recognized image tags using image-tag recogntiion decoder
|
| 179 |
+
image_cls_embeds = image_embeds[:, 0, :]
|
| 180 |
+
image_spatial_embeds = image_embeds[:, 1:, :]
|
| 181 |
+
|
| 182 |
+
bs = image_spatial_embeds.shape[0]
|
| 183 |
+
label_embed = label_embed.unsqueeze(0).repeat(bs, 1, 1)
|
| 184 |
+
tagging_embed = self.tagging_head(
|
| 185 |
+
encoder_embeds=label_embed,
|
| 186 |
+
encoder_hidden_states=image_embeds,
|
| 187 |
+
encoder_attention_mask=image_atts,
|
| 188 |
+
return_dict=False,
|
| 189 |
+
mode='tagging',
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
logits = self.fc(tagging_embed[0]).squeeze(-1)
|
| 193 |
+
|
| 194 |
+
targets = torch.where(
|
| 195 |
+
torch.sigmoid(logits) > self.class_threshold.to(image.device),
|
| 196 |
+
torch.tensor(1.0).to(image.device),
|
| 197 |
+
torch.zeros(self.num_class).to(image.device))
|
| 198 |
+
|
| 199 |
+
tag = targets.cpu().numpy()
|
| 200 |
+
tag[:,self.delete_tag_index] = 0
|
| 201 |
+
tag_output = []
|
| 202 |
+
tag_output_chinese = []
|
| 203 |
+
for b in range(bs):
|
| 204 |
+
index = np.argwhere(tag[b] == 1)
|
| 205 |
+
token = self.tag_list[index].squeeze(axis=1)
|
| 206 |
+
tag_output.append(' | '.join(token))
|
| 207 |
+
token_chinese = self.tag_list_chinese[index].squeeze(axis=1)
|
| 208 |
+
tag_output_chinese.append(' | '.join(token_chinese))
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
return tag_output, tag_output_chinese
|
| 212 |
+
|
| 213 |
|
| 214 |
+
class Tag2Text_Caption(nn.Module):
|
| 215 |
+
|
| 216 |
+
def __init__(self,
|
| 217 |
+
med_config=f'{CONFIG_PATH}/configs/med_config.json',
|
| 218 |
+
image_size=384,
|
| 219 |
+
vit='base',
|
| 220 |
+
vit_grad_ckpt=False,
|
| 221 |
+
vit_ckpt_layer=0,
|
| 222 |
+
prompt='a picture of ',
|
| 223 |
+
threshold=0.68,
|
| 224 |
+
delete_tag_index=[127,2961, 3351, 3265, 3338, 3355, 3359],
|
| 225 |
+
tag_list=f'{CONFIG_PATH}/data/tag_list.txt'):
|
| 226 |
+
r""" Tag2Text inference module, both captioning and tagging are included.
|
| 227 |
+
Tag2Text is an efficient and controllable vision-language pre-training framework.
|
| 228 |
+
Described in the paper "Tag2Text: Guiding Vision-Language Model via Image Tagging" https://arxiv.org/abs/2303.05657
|
| 229 |
+
|
| 230 |
+
Args:
|
| 231 |
+
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
| 232 |
+
image_size (int): input image size
|
| 233 |
+
vit (str): model size of vision transformer
|
| 234 |
+
threshold (int): tagging threshold
|
| 235 |
+
delete_tag_index (list): delete some tags that may disturb captioning
|
| 236 |
+
"""
|
| 237 |
+
super().__init__()
|
| 238 |
+
|
| 239 |
+
# create image encoder
|
| 240 |
+
if vit == 'swin_b':
|
| 241 |
+
if image_size == 224:
|
| 242 |
+
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_224.json'
|
| 243 |
+
elif image_size == 384:
|
| 244 |
+
vision_config_path = f'{CONFIG_PATH}/configs/swin/config_swinB_384.json'
|
| 245 |
+
vision_config = read_json(vision_config_path)
|
| 246 |
+
assert image_size == vision_config['image_res']
|
| 247 |
+
# assert config['patch_size'] == 32
|
| 248 |
+
vision_width = vision_config['vision_width']
|
| 249 |
+
|
| 250 |
+
self.visual_encoder = SwinTransformer(
|
| 251 |
+
img_size=vision_config['image_res'],
|
| 252 |
+
patch_size=4,
|
| 253 |
+
in_chans=3,
|
| 254 |
+
embed_dim=vision_config['embed_dim'],
|
| 255 |
+
depths=vision_config['depths'],
|
| 256 |
+
num_heads=vision_config['num_heads'],
|
| 257 |
+
window_size=vision_config['window_size'],
|
| 258 |
+
mlp_ratio=4.,
|
| 259 |
+
qkv_bias=True,
|
| 260 |
+
drop_rate=0.0,
|
| 261 |
+
drop_path_rate=0.1,
|
| 262 |
+
ape=False,
|
| 263 |
+
patch_norm=True,
|
| 264 |
+
use_checkpoint=False)
|
| 265 |
+
|
| 266 |
+
else:
|
| 267 |
+
self.visual_encoder, vision_width = create_vit(
|
| 268 |
+
vit, image_size, vit_grad_ckpt, vit_ckpt_layer)
|
| 269 |
+
|
| 270 |
+
# create tokenzier
|
| 271 |
+
self.tokenizer = init_tokenizer()
|
| 272 |
+
|
| 273 |
+
# Tag2Text employ encoder-decoder architecture for image-tag-text generation: image-tag interaction encoder and image-tag-text decoder
|
| 274 |
+
# create image-tag interaction encoder
|
| 275 |
encoder_config = BertConfig.from_json_file(med_config)
|
| 276 |
encoder_config.encoder_width = vision_width
|
| 277 |
+
self.tag_encoder = BertModel(config=encoder_config,
|
| 278 |
+
add_pooling_layer=False)
|
| 279 |
+
|
| 280 |
+
# create image-tag-text decoder
|
| 281 |
+
decoder_config = BertConfig.from_json_file(med_config)
|
| 282 |
+
self.text_decoder = BertLMHeadModel(config=decoder_config)
|
| 283 |
+
|
| 284 |
+
# delete some tags that may disturb captioning
|
| 285 |
+
# 127: "quarter"; 2961: "back"; 3351: "two"; 3265: "three"; 3338: "four"; 3355: "five"; 3359: "one"
|
| 286 |
+
self.delete_tag_index = delete_tag_index
|
| 287 |
self.prompt = prompt
|
| 288 |
+
self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1
|
| 289 |
|
| 290 |
+
# load tag list
|
| 291 |
+
self.tag_list = self.load_tag_list(tag_list)
|
|
|
|
| 292 |
|
| 293 |
+
# create image-tag recognition decoder
|
| 294 |
+
self.threshold = threshold
|
| 295 |
+
self.num_class = len(self.tag_list)
|
| 296 |
+
q2l_config = BertConfig.from_json_file(f'{CONFIG_PATH}/configs/q2l_config.json')
|
| 297 |
q2l_config.encoder_width = vision_width
|
| 298 |
+
self.tagging_head = BertModel(config=q2l_config,
|
| 299 |
+
add_pooling_layer=False)
|
| 300 |
+
self.tagging_head.resize_token_embeddings(len(self.tokenizer))
|
| 301 |
self.label_embed = nn.Embedding(self.num_class, q2l_config.hidden_size)
|
| 302 |
+
self.fc = GroupWiseLinear(self.num_class,
|
| 303 |
+
q2l_config.hidden_size,
|
| 304 |
+
bias=True)
|
| 305 |
self.del_selfattention()
|
| 306 |
|
| 307 |
+
# share weights of the lowest 2-layer of "image-tag interaction encoder" with the "image-tag recogntion decoder"
|
| 308 |
+
tie_encoder_decoder_weights(self.tag_encoder, self.tagging_head, '',
|
| 309 |
+
' ')
|
| 310 |
|
| 311 |
+
# adjust thresholds for some tags
|
| 312 |
+
# default threshold: 0.68
|
| 313 |
+
# 2701: "person"; 2828: "man"; 1167: "woman";
|
| 314 |
+
tag_thrshold = {2701:0.7, 2828: 0.7, 1167: 0.7}
|
| 315 |
self.class_threshold = torch.ones(self.num_class) * self.threshold
|
| 316 |
for key,value in tag_thrshold.items():
|
| 317 |
self.class_threshold[key] = value
|
| 318 |
+
|
| 319 |
+
def load_tag_list(self, tag_list_file):
|
| 320 |
+
with open(tag_list_file, 'r') as f:
|
| 321 |
+
tag_list = f.read().splitlines()
|
| 322 |
+
tag_list = np.array(tag_list)
|
| 323 |
+
return tag_list
|
| 324 |
+
|
| 325 |
+
# delete self-attention layer of image-tag recognition decoder to reduce computation, follower Query2Label
|
| 326 |
def del_selfattention(self):
|
| 327 |
+
del self.tagging_head.embeddings
|
| 328 |
+
for layer in self.tagging_head.encoder.layer:
|
| 329 |
del layer.attention
|
| 330 |
+
|
| 331 |
+
def generate(self,
|
| 332 |
+
image,
|
| 333 |
+
sample=False,
|
| 334 |
+
num_beams=3,
|
| 335 |
+
max_length=30,
|
| 336 |
+
min_length=10,
|
| 337 |
+
top_p=0.9,
|
| 338 |
+
repetition_penalty=1.0,
|
| 339 |
+
tag_input=None,
|
| 340 |
+
return_tag_predict=False):
|
| 341 |
+
|
| 342 |
image_embeds = self.visual_encoder(image)
|
| 343 |
+
image_atts = torch.ones(image_embeds.size()[:-1],
|
| 344 |
+
dtype=torch.long).to(image.device)
|
| 345 |
|
| 346 |
+
# if not user specified tags, recognized image tags using image-tag recogntiion decoder
|
| 347 |
if tag_input == None:
|
| 348 |
+
image_cls_embeds = image_embeds[:, 0, :]
|
| 349 |
+
image_spatial_embeds = image_embeds[:, 1:, :]
|
| 350 |
|
| 351 |
bs = image_spatial_embeds.shape[0]
|
| 352 |
+
label_embed = self.label_embed.weight.unsqueeze(0).repeat(bs, 1, 1)
|
| 353 |
+
tagging_embed = self.tagging_head(
|
| 354 |
+
encoder_embeds=label_embed,
|
| 355 |
+
encoder_hidden_states=image_embeds,
|
| 356 |
+
encoder_attention_mask=image_atts,
|
| 357 |
+
return_dict=False,
|
| 358 |
+
mode='tagging',
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
logits = self.fc(tagging_embed[0])
|
| 362 |
+
|
| 363 |
+
targets = torch.where(
|
| 364 |
+
torch.sigmoid(logits) > self.class_threshold,
|
| 365 |
+
torch.tensor(1.0).to(image.device),
|
| 366 |
+
torch.zeros(self.num_class).to(image.device))
|
| 367 |
|
| 368 |
tag = targets.cpu().numpy()
|
| 369 |
+
|
| 370 |
+
# delete some tags that may disturb captioning
|
| 371 |
+
tag[:, self.delete_tag_index] = 0
|
| 372 |
+
|
| 373 |
tag_input = []
|
| 374 |
for b in range(bs):
|
| 375 |
index = np.argwhere(tag[b] == 1)
|
| 376 |
+
token = self.tag_list[index].squeeze(axis=1)
|
| 377 |
+
tag_input.append(' | '.join(token))
|
| 378 |
+
|
| 379 |
+
tag_output = tag_input
|
| 380 |
+
|
| 381 |
+
# beam search for text generation(default)
|
| 382 |
if not sample:
|
| 383 |
+
image_embeds = image_embeds.repeat_interleave(num_beams, dim=0)
|
| 384 |
tag_input_temp = []
|
| 385 |
for tag in tag_input:
|
| 386 |
for i in range(num_beams):
|
| 387 |
tag_input_temp.append(tag)
|
| 388 |
tag_input = tag_input_temp
|
| 389 |
|
| 390 |
+
image_atts = torch.ones(image_embeds.size()[:-1],
|
| 391 |
+
dtype=torch.long).to(image.device)
|
| 392 |
|
| 393 |
+
# tokenizer input tags
|
| 394 |
+
tag_input_tokenzier = self.tokenizer(tag_input,
|
| 395 |
+
padding='max_length',
|
| 396 |
+
truncation=True,
|
| 397 |
+
max_length=40,
|
| 398 |
+
return_tensors="pt").to(
|
| 399 |
+
image.device)
|
| 400 |
encoder_input_ids = tag_input_tokenzier.input_ids
|
| 401 |
+
encoder_input_ids[:, 0] = self.tokenizer.enc_token_id
|
| 402 |
+
|
| 403 |
+
# put input tag into image-tag interaction encoder to interact with image embeddings
|
| 404 |
+
output_tagembedding = self.tag_encoder(
|
| 405 |
+
encoder_input_ids,
|
| 406 |
+
attention_mask=tag_input_tokenzier.attention_mask,
|
| 407 |
+
encoder_hidden_states=image_embeds,
|
| 408 |
+
encoder_attention_mask=image_atts,
|
| 409 |
+
return_dict=True,
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
# prompt trick for better captioning, followed BLIP
|
| 413 |
prompt = [self.prompt] * image.size(0)
|
| 414 |
+
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(
|
| 415 |
+
image.device)
|
| 416 |
+
input_ids[:, 0] = self.tokenizer.bos_token_id
|
| 417 |
+
input_ids = input_ids[:, :-1]
|
| 418 |
|
| 419 |
if sample:
|
| 420 |
+
# nucleus sampling
|
| 421 |
+
model_kwargs = {
|
| 422 |
+
"encoder_hidden_states": output_tagembedding.last_hidden_state,
|
| 423 |
+
"encoder_attention_mask": None
|
| 424 |
+
}
|
| 425 |
+
outputs = self.text_decoder.generate(
|
| 426 |
+
input_ids=input_ids,
|
| 427 |
+
max_length=max_length,
|
| 428 |
+
min_length=min_length,
|
| 429 |
+
do_sample=True,
|
| 430 |
+
top_p=top_p,
|
| 431 |
+
num_return_sequences=1,
|
| 432 |
+
eos_token_id=self.tokenizer.sep_token_id,
|
| 433 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
| 434 |
+
repetition_penalty=1.1,
|
| 435 |
+
**model_kwargs)
|
| 436 |
else:
|
| 437 |
+
# beam search (default)
|
| 438 |
+
model_kwargs = {
|
| 439 |
+
"encoder_hidden_states": output_tagembedding.last_hidden_state,
|
| 440 |
+
"encoder_attention_mask": None
|
| 441 |
+
}
|
| 442 |
+
outputs = self.text_decoder.generate(
|
| 443 |
+
input_ids=input_ids,
|
| 444 |
+
max_length=max_length,
|
| 445 |
+
min_length=min_length,
|
| 446 |
+
num_beams=num_beams,
|
| 447 |
+
eos_token_id=self.tokenizer.sep_token_id,
|
| 448 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
| 449 |
+
repetition_penalty=repetition_penalty,
|
| 450 |
+
**model_kwargs)
|
| 451 |
+
|
| 452 |
+
captions = []
|
| 453 |
for output in outputs:
|
| 454 |
+
caption = self.tokenizer.decode(output, skip_special_tokens=True)
|
| 455 |
captions.append(caption[len(self.prompt):])
|
| 456 |
if return_tag_predict == True:
|
| 457 |
+
return captions, tag_output
|
|
|
|
|
|
|
|
|
|
| 458 |
return captions
|
| 459 |
|
| 460 |
|
| 461 |
+
# load Tag2Text pretrained model parameters
|
| 462 |
+
def tag2text_caption(pretrained='', **kwargs):
|
| 463 |
model = Tag2Text_Caption(**kwargs)
|
| 464 |
if pretrained:
|
| 465 |
if kwargs['vit'] == 'swin_b':
|
| 466 |
+
model, msg = load_checkpoint_swinbase(model, pretrained, kwargs)
|
| 467 |
else:
|
| 468 |
+
model, msg = load_checkpoint(model, pretrained)
|
| 469 |
+
print('vit:', kwargs['vit'])
|
| 470 |
+
print('msg', msg)
|
| 471 |
+
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 472 |
|
| 473 |
|
| 474 |
+
# load RAM pretrained model parameters
|
| 475 |
+
def ram(pretrained='', **kwargs):
|
| 476 |
+
model = RAM(**kwargs)
|
| 477 |
+
if pretrained:
|
| 478 |
+
if kwargs['vit'] == 'swin_b':
|
| 479 |
+
model, msg = load_checkpoint_swinbase(model, pretrained, kwargs)
|
| 480 |
+
elif kwargs['vit'] == 'swin_l':
|
| 481 |
+
model, msg = load_checkpoint_swinlarge(model, pretrained, kwargs)
|
| 482 |
+
else:
|
| 483 |
+
model, msg = load_checkpoint(model, pretrained)
|
| 484 |
+
print('vit:', kwargs['vit'])
|
| 485 |
+
print('msg', msg)
|
| 486 |
+
return model
|
| 487 |
|