detectron2 / app.py
stalyn314's picture
Update app.py
3864c43 verified
try:
import detectron2
except:
import os
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
# Manipulación de Datos y Bibliotecas Científicas
import csv # Leer y escribir archivos CSV
import numpy as np # Cálculos numéricos con soporte para matrices y arrays
import pandas as pd # Manipulación y análisis de datos, especialmente con DataFrames
import random # Generar números aleatorios y realizar operaciones aleatorias
import datetime # Trabajar con fechas y horas
from datetime import datetime
# Visualización
import matplotlib.pyplot as plt # Crear gráficos estáticos, interactivos y animados
from matplotlib.path import Path # Trabajar con caminos geométricos en visualizaciones
from matplotlib.pyplot import axis
# Procesamiento de Imágenes y Visión por Computadora (OpenCV y Scikit-Image)
import cv2 # Para procesamiento de imágenes y tareas de visión por computadora
from skimage import measure, io, color, draw # Funciones de procesamiento de imágenes en skimage
from skimage.measure import regionprops # Para medir propiedades de regiones en imágenes
# Manipulación de Imágenes
from PIL import Image # Para abrir, manipular y guardar imágenes en diferentes formatos
# Serialización de Datos
import json # Para analizar y serializar datos JSON
import yaml # Para leer y escribir archivos YAML (serialización de datos en formato humano)
# Barra de Progreso
from tqdm import tqdm # Para mostrar una barra de progreso en tareas largas
# Diagramas Ternarios
import ternary # Para crear diagramas ternarios (ej. gráficos de 3 variables)
# Generación de Reportes PDF
from fpdf import FPDF # Para crear documentos PDF de forma sencilla
import gradio as gr
import requests
from torch import nn
import requests
import torch
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog
models = [
{
"name": "Version 1 (2-class)",
"model_path": "https://huggingface.co/stalyn314/PaucarMineralModel/resolve/main/xplx10x_d2.pth",
"classes": ["minerales", "Afs", "Amp", "Bt", "Ms", "Ol", "Pl", "Px", "Qz"],
"cfg": None,
"metadata": None
},
{
"name": "Version 2 (4-class)",
"model_path": "https://huggingface.co/stalyn314/PaucarMineralModel/resolve/main/10xmodel_d2.pth",
"classes": ["minerales", "Afs", "Amp", "Bt", "Ms", "Ol", "Pl", "Px", "Qz"],
"cfg": None,
"metadata": None
},
]
model_name_to_id = {model["name"] : id_ for id_, model in enumerate(models)}
for model in models:
model["cfg"] = get_cfg()
model["cfg"].merge_from_file("./configs/detectron2/mask_rcnn_X_101_32x8d_FPN_3x.yaml")
model["cfg"].MODEL.ROI_HEADS.NUM_CLASSES = len(model["classes"])
model["cfg"].MODEL.WEIGHTS = model["model_path"]
model["metadata"] = MetadataCatalog.get(model["name"])
model["metadata"].thing_classes = model["classes"]
if not torch.cuda.is_available():
model["cfg"].MODEL.DEVICE = "cpu"
def inference(image_url, image, min_score, model_name):
if image_url:
r = requests.get(image_url)
if r:
im = np.frombuffer(r.content, dtype="uint8")
im = cv2.imdecode(im, cv2.IMREAD_COLOR_BGR2RGB)
else:
# Model expect BGR!
im = image[:,:,::-1]
model_id = model_name_to_id[model_name]
models[model_id]["cfg"].MODEL.ROI_HEADS.SCORE_THRESH_TEST = min_score
predictor = DefaultPredictor(models[model_id]["cfg"])
outputs = predictor(im)
v = Visualizer(im, models[model_id]["metadata"], scale=1.2)
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
# Convertir la imagen de salida de BGR a RGB
result_image = out.get_image() # Esto sigue estando en BGR
result_image_rgb = result_image[:, :, ::-1] # Convertir BGR a RGB
return result_image_rgb
title = "# DBMDZ Detectron2 Model Demo"
description = """
This demo introduces an interactive playground for our trained Detectron2 model.
Currently, two models are supported that were trained on manually annotated segments from digitized books:
* [Version 1 (2-class)](https://huggingface.co/dbmdz/detectron2-model): This model can detect *Illustration* or *Illumination* segments on a given page.
* [Version 2 (4-class)](https://huggingface.co/dbmdz/detectron2-v2-model): This model is more powerful and can detect *Illustration*, *Stamp*, *Initial* or *Other* segments on a given page.
"""
footer = "🥨"
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Tab("From URL"):
url_input = gr.Textbox(label="Image URL", placeholder="https://api.digitale-sammlungen.de/iiif/image/v2/bsb10483966_00008/full/500,/0/default.jpg")
with gr.Tab("From Image"):
image_input = gr.Image(type="numpy", label="Input Image")
min_score = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Minimum score")
model_name = gr.Radio(choices=[model["name"] for model in models], value=models[0]["name"], label="Select Detectron2 model")
output_image = gr.Image(type="pil", label="Output")
inference_button = gr.Button("Submit")
inference_button.click(fn=inference, inputs=[url_input, image_input, min_score, model_name], outputs=output_image)
gr.Markdown(footer)
demo.launch()
#gr.Interface(
# inference,
# [gr.inputs.Textbox(label="Image URL", placeholder="https://api.digitale-sammlungen.de/iiif/image/v2/bsb10483966_00008/full/500,/0/default.jpg"),
# gr.inputs.Image(type="numpy", label="Input Image"),
# gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Minimum score"),
# gr.Radio(choices=[model["name"] for model in models], value=models[0]["name"], label="Select Detectron2 model"),
# ],
# gr.outputs.Image(type="pil", label="Output"),
# title=title,
# description=description,
# article=article,
# examples=[]).launch()