Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -55,36 +55,32 @@ for model in models:
|
|
55 |
model["cfg"].MODEL.DEVICE = "cpu"
|
56 |
|
57 |
|
58 |
-
def inference(image, min_score, model_name):
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
model_id = model_name_to_id[model_name]
|
|
|
62 |
models[model_id]["cfg"].MODEL.ROI_HEADS.SCORE_THRESH_TEST = min_score
|
63 |
predictor = DefaultPredictor(models[model_id]["cfg"])
|
64 |
|
65 |
-
|
66 |
-
if isinstance(image, list): # Si es una lista de imágenes
|
67 |
-
images = image
|
68 |
-
else: # Si es solo una imagen, la convertimos en una lista
|
69 |
-
images = [image]
|
70 |
-
|
71 |
-
for img in images:
|
72 |
-
# Convert image from BGR to RGB if necessary
|
73 |
-
im = img[:,:,::-1]
|
74 |
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
|
80 |
|
81 |
-
# Convert the result from BGR to RGB
|
82 |
-
result_image = out.get_image()
|
83 |
-
result_image_rgb = result_image[:, :, ::-1] # Convert BGR to RGB
|
84 |
-
|
85 |
-
results.append(result_image_rgb) # Add the processed image to the list
|
86 |
-
|
87 |
-
return results # Return all the results
|
88 |
|
89 |
title = "# DBMDZ Detectron2 Model Demo"
|
90 |
description = """
|
@@ -99,18 +95,21 @@ with gr.Blocks() as demo:
|
|
99 |
gr.Markdown(title)
|
100 |
gr.Markdown(description)
|
101 |
|
|
|
|
|
|
|
102 |
with gr.Tab("From Image"):
|
103 |
-
image_input = gr.
|
104 |
|
105 |
min_score = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Minimum score")
|
106 |
|
107 |
model_name = gr.Radio(choices=[model["name"] for model in models], value=models[0]["name"], label="Select Detectron2 model")
|
108 |
|
109 |
-
|
110 |
|
111 |
inference_button = gr.Button("Submit")
|
112 |
|
113 |
-
inference_button.click(fn=inference, inputs=[image_input, min_score, model_name], outputs=
|
114 |
|
115 |
gr.Markdown(footer)
|
116 |
|
|
|
55 |
model["cfg"].MODEL.DEVICE = "cpu"
|
56 |
|
57 |
|
58 |
+
def inference(image_url, image, min_score, model_name):
|
59 |
+
if image_url:
|
60 |
+
r = requests.get(image_url)
|
61 |
+
if r:
|
62 |
+
im = np.frombuffer(r.content, dtype="uint8")
|
63 |
+
im = cv2.imdecode(im, cv2.IMREAD_COLOR_BGR2RGB)
|
64 |
+
else:
|
65 |
+
# Model expect BGR!
|
66 |
+
im = image[:,:,::-1]
|
67 |
+
|
68 |
model_id = model_name_to_id[model_name]
|
69 |
+
|
70 |
models[model_id]["cfg"].MODEL.ROI_HEADS.SCORE_THRESH_TEST = min_score
|
71 |
predictor = DefaultPredictor(models[model_id]["cfg"])
|
72 |
|
73 |
+
outputs = predictor(im)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
v = Visualizer(im, models[model_id]["metadata"], scale=1.2)
|
76 |
+
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
|
77 |
+
|
78 |
+
# Convertir la imagen de salida de BGR a RGB
|
79 |
+
result_image = out.get_image() # Esto sigue estando en BGR
|
80 |
+
result_image_rgb = result_image[:, :, ::-1] # Convertir BGR a RGB
|
81 |
|
82 |
+
return result_image_rgb
|
|
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
title = "# DBMDZ Detectron2 Model Demo"
|
86 |
description = """
|
|
|
95 |
gr.Markdown(title)
|
96 |
gr.Markdown(description)
|
97 |
|
98 |
+
with gr.Tab("From URL"):
|
99 |
+
url_input = gr.Textbox(label="Image URL", placeholder="https://api.digitale-sammlungen.de/iiif/image/v2/bsb10483966_00008/full/500,/0/default.jpg")
|
100 |
+
|
101 |
with gr.Tab("From Image"):
|
102 |
+
image_input = gr.Image(type="numpy", label="Input Image")
|
103 |
|
104 |
min_score = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Minimum score")
|
105 |
|
106 |
model_name = gr.Radio(choices=[model["name"] for model in models], value=models[0]["name"], label="Select Detectron2 model")
|
107 |
|
108 |
+
output_image = gr.Image(type="pil", label="Output")
|
109 |
|
110 |
inference_button = gr.Button("Submit")
|
111 |
|
112 |
+
inference_button.click(fn=inference, inputs=[url_input, image_input, min_score, model_name], outputs=output_image)
|
113 |
|
114 |
gr.Markdown(footer)
|
115 |
|