Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -55,32 +55,30 @@ for model in models:
|
|
55 |
model["cfg"].MODEL.DEVICE = "cpu"
|
56 |
|
57 |
|
58 |
-
def inference(
|
59 |
-
|
60 |
-
|
61 |
-
if r:
|
62 |
-
im = np.frombuffer(r.content, dtype="uint8")
|
63 |
-
im = cv2.imdecode(im, cv2.IMREAD_COLOR_BGR2RGB)
|
64 |
-
else:
|
65 |
-
# Model expect BGR!
|
66 |
-
im = image[:,:,::-1]
|
67 |
-
|
68 |
model_id = model_name_to_id[model_name]
|
69 |
-
|
70 |
models[model_id]["cfg"].MODEL.ROI_HEADS.SCORE_THRESH_TEST = min_score
|
71 |
predictor = DefaultPredictor(models[model_id]["cfg"])
|
72 |
|
73 |
-
|
|
|
|
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
# Convertir la imagen de salida de BGR a RGB
|
79 |
-
result_image = out.get_image() # Esto sigue estando en BGR
|
80 |
-
result_image_rgb = result_image[:, :, ::-1] # Convertir BGR a RGB
|
81 |
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
83 |
|
|
|
|
|
|
|
84 |
|
85 |
title = "# DBMDZ Detectron2 Model Demo"
|
86 |
description = """
|
@@ -95,21 +93,18 @@ with gr.Blocks() as demo:
|
|
95 |
gr.Markdown(title)
|
96 |
gr.Markdown(description)
|
97 |
|
98 |
-
with gr.Tab("From URL"):
|
99 |
-
url_input = gr.Textbox(label="Image URL", placeholder="https://api.digitale-sammlungen.de/iiif/image/v2/bsb10483966_00008/full/500,/0/default.jpg")
|
100 |
-
|
101 |
with gr.Tab("From Image"):
|
102 |
-
image_input = gr.Image(type="numpy", label="Input
|
103 |
|
104 |
min_score = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Minimum score")
|
105 |
|
106 |
model_name = gr.Radio(choices=[model["name"] for model in models], value=models[0]["name"], label="Select Detectron2 model")
|
107 |
|
108 |
-
|
109 |
|
110 |
inference_button = gr.Button("Submit")
|
111 |
|
112 |
-
inference_button.click(fn=inference, inputs=[
|
113 |
|
114 |
gr.Markdown(footer)
|
115 |
|
|
|
55 |
model["cfg"].MODEL.DEVICE = "cpu"
|
56 |
|
57 |
|
58 |
+
def inference(image, min_score, model_name):
|
59 |
+
results = []
|
60 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
model_id = model_name_to_id[model_name]
|
|
|
62 |
models[model_id]["cfg"].MODEL.ROI_HEADS.SCORE_THRESH_TEST = min_score
|
63 |
predictor = DefaultPredictor(models[model_id]["cfg"])
|
64 |
|
65 |
+
for img in image:
|
66 |
+
# Convert image from BGR to RGB if necessary
|
67 |
+
im = img[:,:,::-1]
|
68 |
|
69 |
+
# Make the prediction
|
70 |
+
outputs = predictor(im)
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
v = Visualizer(im, models[model_id]["metadata"], scale=1.2)
|
73 |
+
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
|
74 |
+
|
75 |
+
# Convert the result from BGR to RGB
|
76 |
+
result_image = out.get_image()
|
77 |
+
result_image_rgb = result_image[:, :, ::-1] # Convert BGR to RGB
|
78 |
|
79 |
+
results.append(result_image_rgb) # Add the processed image to the list
|
80 |
+
|
81 |
+
return results # Return all the results
|
82 |
|
83 |
title = "# DBMDZ Detectron2 Model Demo"
|
84 |
description = """
|
|
|
93 |
gr.Markdown(title)
|
94 |
gr.Markdown(description)
|
95 |
|
|
|
|
|
|
|
96 |
with gr.Tab("From Image"):
|
97 |
+
image_input = gr.Image(type="numpy", label="Input Images", elem_id="input_image", multiple=True)
|
98 |
|
99 |
min_score = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Minimum score")
|
100 |
|
101 |
model_name = gr.Radio(choices=[model["name"] for model in models], value=models[0]["name"], label="Select Detectron2 model")
|
102 |
|
103 |
+
output_gallery = gr.Gallery(label="Output Images", elem_id="output_images").style(grid=2)
|
104 |
|
105 |
inference_button = gr.Button("Submit")
|
106 |
|
107 |
+
inference_button.click(fn=inference, inputs=[image_input, min_score, model_name], outputs=output_gallery)
|
108 |
|
109 |
gr.Markdown(footer)
|
110 |
|