Update app.py
Browse files
app.py
CHANGED
|
@@ -10,6 +10,7 @@ from langchain.chains import ConversationalRetrievalChain
|
|
| 10 |
from htmlTemplates import css, bot_template, user_template
|
| 11 |
from langchain.llms import HuggingFaceHub, LlamaCpp
|
| 12 |
from huggingface_hub import snapshot_download, hf_hub_download
|
|
|
|
| 13 |
|
| 14 |
repo_name = "IlyaGusev/saiga2_7b_gguf"
|
| 15 |
model_name = "model-q2_K.gguf"
|
|
@@ -30,8 +31,8 @@ def get_pdf_text(pdf_docs):
|
|
| 30 |
def get_text_chunks(text):
|
| 31 |
|
| 32 |
text_splitter = CharacterTextSplitter(separator="\n",
|
| 33 |
-
chunk_size=1000
|
| 34 |
-
chunk_overlap=200
|
| 35 |
length_function=len
|
| 36 |
)
|
| 37 |
chunks = text_splitter.split_text(text)
|
|
@@ -51,12 +52,22 @@ def get_vectorstore(text_chunks):
|
|
| 51 |
|
| 52 |
def get_conversation_chain(vectorstore, model_name):
|
| 53 |
|
| 54 |
-
llm = LlamaCpp(model_path=model_name,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
#llm = ChatOpenAI()
|
| 56 |
|
| 57 |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
| 58 |
|
| 59 |
conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm,
|
|
|
|
| 60 |
retriever=vectorstore.as_retriever(),
|
| 61 |
memory=memory
|
| 62 |
)
|
|
|
|
| 10 |
from htmlTemplates import css, bot_template, user_template
|
| 11 |
from langchain.llms import HuggingFaceHub, LlamaCpp
|
| 12 |
from huggingface_hub import snapshot_download, hf_hub_download
|
| 13 |
+
from prompts import CONDENSE_QUESTION_PROMPT
|
| 14 |
|
| 15 |
repo_name = "IlyaGusev/saiga2_7b_gguf"
|
| 16 |
model_name = "model-q2_K.gguf"
|
|
|
|
| 31 |
def get_text_chunks(text):
|
| 32 |
|
| 33 |
text_splitter = CharacterTextSplitter(separator="\n",
|
| 34 |
+
chunk_size=500, #1000
|
| 35 |
+
chunk_overlap=30, #200
|
| 36 |
length_function=len
|
| 37 |
)
|
| 38 |
chunks = text_splitter.split_text(text)
|
|
|
|
| 52 |
|
| 53 |
def get_conversation_chain(vectorstore, model_name):
|
| 54 |
|
| 55 |
+
llm = LlamaCpp(model_path=model_name,
|
| 56 |
+
temperature=0.1,
|
| 57 |
+
top_k=30,
|
| 58 |
+
top_p=0.9,
|
| 59 |
+
streaming=True,
|
| 60 |
+
n_ctx=2048,
|
| 61 |
+
n_parts=1,
|
| 62 |
+
echo=True
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
#llm = ChatOpenAI()
|
| 66 |
|
| 67 |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
| 68 |
|
| 69 |
conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm,
|
| 70 |
+
condense_question_prompt=CONDENSE_QUESTION_PROMPT
|
| 71 |
retriever=vectorstore.as_retriever(),
|
| 72 |
memory=memory
|
| 73 |
)
|