Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,868 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Import necessary libraries
|
3 |
+
import os # Interacting with the operating system (reading/writing files)
|
4 |
+
import chromadb # High-performance vector database for storing/querying dense vectors
|
5 |
+
from dotenv import load_dotenv # Loading environment variables from a .env file
|
6 |
+
import json # Parsing and handling JSON data
|
7 |
+
|
8 |
+
# LangChain imports
|
9 |
+
from langchain_core.documents import Document # Document data structures
|
10 |
+
from langchain_core.runnables import RunnablePassthrough # LangChain core library for running pipelines
|
11 |
+
from langchain_core.output_parsers import StrOutputParser # String output parser
|
12 |
+
from langchain.prompts import ChatPromptTemplate # Template for chat prompts
|
13 |
+
from langchain.chains.query_constructor.base import AttributeInfo # Base classes for query construction
|
14 |
+
from langchain.retrievers.self_query.base import SelfQueryRetriever # Base classes for self-querying retrievers
|
15 |
+
from langchain.retrievers.document_compressors import LLMChainExtractor, CrossEncoderReranker # Document compressors
|
16 |
+
from langchain.retrievers import ContextualCompressionRetriever # Contextual compression retrievers
|
17 |
+
|
18 |
+
# LangChain community & experimental imports
|
19 |
+
from langchain_community.vectorstores import Chroma # Implementations of vector stores like Chroma
|
20 |
+
from langchain_community.document_loaders import PyPDFDirectoryLoader, PyPDFLoader # Document loaders for PDFs
|
21 |
+
from langchain_community.cross_encoders import HuggingFaceCrossEncoder # Cross-encoders from HuggingFace
|
22 |
+
from langchain_experimental.text_splitter import SemanticChunker # Experimental text splitting methods
|
23 |
+
from langchain.text_splitter import (
|
24 |
+
CharacterTextSplitter, # Splitting text by characters
|
25 |
+
RecursiveCharacterTextSplitter # Recursive splitting of text by characters
|
26 |
+
)
|
27 |
+
from langchain_core.tools import tool
|
28 |
+
from langchain.agents import create_tool_calling_agent, AgentExecutor
|
29 |
+
from langchain_core.prompts import ChatPromptTemplate
|
30 |
+
|
31 |
+
# LangChain OpenAI imports
|
32 |
+
from langchain_openai import AzureOpenAIEmbeddings, AzureChatOpenAI # OpenAI embeddings and models
|
33 |
+
from langchain.embeddings.openai import OpenAIEmbeddings # OpenAI embeddings for text vectors
|
34 |
+
|
35 |
+
# LlamaParse & LlamaIndex imports
|
36 |
+
from llama_parse import LlamaParse # Document parsing library
|
37 |
+
from llama_index.core import Settings, SimpleDirectoryReader # Core functionalities of the LlamaIndex
|
38 |
+
|
39 |
+
# LangGraph import
|
40 |
+
from langgraph.graph import StateGraph, END, START # State graph for managing states in LangChain
|
41 |
+
|
42 |
+
# Pydantic import
|
43 |
+
from pydantic import BaseModel # Pydantic for data validation
|
44 |
+
|
45 |
+
# Typing imports
|
46 |
+
from typing import Dict, List, Tuple, Any, TypedDict # Python typing for function annotations
|
47 |
+
|
48 |
+
# Other utilities
|
49 |
+
import numpy as np # Numpy for numerical operations
|
50 |
+
from groq import Groq
|
51 |
+
from mem0 import MemoryClient
|
52 |
+
import streamlit as st
|
53 |
+
from datetime import datetime
|
54 |
+
|
55 |
+
#====================================SETUP=====================================#
|
56 |
+
# Fetch secrets from Hugging Face Spaces
|
57 |
+
api_key = config.get("API_KEY")
|
58 |
+
endpoint = config.get("OPENAI_API_BASE")
|
59 |
+
llama_api_key = os.environ['GROQ_API_KEY']
|
60 |
+
MEM0_api_key = os.environ['mem0']
|
61 |
+
|
62 |
+
# Initialize the OpenAI embedding function for Chroma
|
63 |
+
embedding_function = chromadb.utils.embedding_functions.OpenAIEmbeddingFunction(
|
64 |
+
api_base=endpoint, # Complete the code to define the API base endpoint
|
65 |
+
api_key=api_key, # Complete the code to define the API key
|
66 |
+
model_name='text-embedding-ada-002' # This is a fixed value and does not need modification
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
# Initialize the OpenAI Embeddings
|
71 |
+
embedding_model = OpenAIEmbeddings(
|
72 |
+
openai_api_base=endpoint,
|
73 |
+
openai_api_key=api_key,
|
74 |
+
model='text-embedding-ada-002'
|
75 |
+
)
|
76 |
+
|
77 |
+
|
78 |
+
# Initialize the Chat OpenAI model
|
79 |
+
llm = ChatOpenAI(
|
80 |
+
openai_api_base=endpoint,
|
81 |
+
openai_api_key=api_key,
|
82 |
+
model="gpt-4o-mini",
|
83 |
+
streaming=False
|
84 |
+
)
|
85 |
+
|
86 |
+
|
87 |
+
# set the LLM and embedding model in the LlamaIndex settings.
|
88 |
+
Settings.llm = llm
|
89 |
+
Settings.embedding = embedding_model
|
90 |
+
|
91 |
+
#================================Creating Langgraph agent======================#
|
92 |
+
|
93 |
+
class AgentState(TypedDict):
|
94 |
+
query: str # The current user query
|
95 |
+
expanded_query: str # The expanded version of the user query
|
96 |
+
context: List[Dict[str, Any]] # Retrieved documents (content and metadata)
|
97 |
+
response: str # The generated response to the user query
|
98 |
+
precision_score: float # The precision score of the response
|
99 |
+
groundedness_score: float # The groundedness score of the response
|
100 |
+
groundedness_loop_count: int # Counter for groundedness refinement loops
|
101 |
+
precision_loop_count: int # Counter for precision refinement loops
|
102 |
+
feedback: str
|
103 |
+
query_feedback: str
|
104 |
+
groundedness_check: bool
|
105 |
+
loop_max_iter: int
|
106 |
+
|
107 |
+
def expand_query(state):
|
108 |
+
"""
|
109 |
+
Expands the user query to improve retrieval of nutrition disorder-related information.
|
110 |
+
|
111 |
+
Args:
|
112 |
+
state (Dict): The current state of the workflow, containing the user query.
|
113 |
+
|
114 |
+
Returns:
|
115 |
+
Dict: The updated state with the expanded query.
|
116 |
+
"""
|
117 |
+
print("---------Expanding Query---------")
|
118 |
+
system_message = '''You are an AI specializing in improving search queries to retrieve the most relevant nutrition disorder-related information.
|
119 |
+
Your task is to **refine** and **expand** the given query so that better search results are obtained, while **keeping the original intent** unchanged.
|
120 |
+
|
121 |
+
Guidelines:
|
122 |
+
- Add **specific details** where needed. Example: If a user asks about "anorexia," specify aspects like symptoms, causes, or treatment options.
|
123 |
+
- Include **related terms** to improve retrieval (e.g., “bulimia” → “bulimia nervosa vs binge eating disorder”).
|
124 |
+
- If the user provides an unclear query, suggest necessary clarifications.
|
125 |
+
- **DO NOT** answer the question. Your job is only to enhance the query.
|
126 |
+
|
127 |
+
Examples:
|
128 |
+
1. User Query: "Tell me about eating disorders."
|
129 |
+
Expanded Query: "Provide details on eating disorders, including types (e.g., anorexia nervosa, bulimia nervosa), symptoms, causes, and treatment options."
|
130 |
+
|
131 |
+
2. User Query: "What is anorexia?"
|
132 |
+
Expanded Query: "Explain anorexia nervosa, including its symptoms, causes, risk factors, and treatment options."
|
133 |
+
|
134 |
+
3. User Query: "How to treat bulimia?"
|
135 |
+
Expanded Query: "Describe treatment options for bulimia nervosa, including psychotherapy, medications, and lifestyle changes."
|
136 |
+
|
137 |
+
4. User Query: "What are the effects of malnutrition?"
|
138 |
+
Expanded Query: "Explain the effects of malnutrition on physical and mental health, including specific nutrient deficiencies and their consequences."
|
139 |
+
|
140 |
+
Now, expand the following query:'''
|
141 |
+
|
142 |
+
expand_prompt = ChatPromptTemplate.from_messages([
|
143 |
+
("system", system_message),
|
144 |
+
("user", "Expand this query: {query} using the feedback: {query_feedback}")
|
145 |
+
|
146 |
+
])
|
147 |
+
|
148 |
+
chain = expand_prompt | llm | StrOutputParser()
|
149 |
+
expanded_query = chain.invoke({"query": state['query'], "query_feedback":state["query_feedback"]})
|
150 |
+
print("expanded_query", expanded_query)
|
151 |
+
state["expanded_query"] = expanded_query
|
152 |
+
return state
|
153 |
+
|
154 |
+
|
155 |
+
# Initialize the Chroma vector store for retrieving documents
|
156 |
+
vector_store = Chroma(
|
157 |
+
collection_name="nutritional_hypotheticals",
|
158 |
+
persist_directory="./nutritional_db",
|
159 |
+
embedding_function=embedding_model
|
160 |
+
|
161 |
+
)
|
162 |
+
|
163 |
+
# Create a retriever from the vector store
|
164 |
+
retriever = vector_store.as_retriever(
|
165 |
+
search_type='similarity',
|
166 |
+
search_kwargs={'k': 3}
|
167 |
+
)
|
168 |
+
|
169 |
+
def retrieve_context(state):
|
170 |
+
"""
|
171 |
+
Retrieves context from the vector store using the expanded or original query.
|
172 |
+
|
173 |
+
Args:
|
174 |
+
state (Dict): The current state of the workflow, containing the query and expanded query.
|
175 |
+
|
176 |
+
Returns:
|
177 |
+
Dict: The updated state with the retrieved context.
|
178 |
+
"""
|
179 |
+
print("---------retrieve_context---------")
|
180 |
+
query = state['expanded_query']
|
181 |
+
#print("Query used for retrieval:", query) # Debugging: Print the query
|
182 |
+
|
183 |
+
# Retrieve documents from the vector store
|
184 |
+
docs = retriever.invoke(query)
|
185 |
+
print("Retrieved documents:", docs) # Debugging: Print the raw docs object
|
186 |
+
|
187 |
+
# Extract both page_content and metadata from each document
|
188 |
+
context= [
|
189 |
+
{
|
190 |
+
"content": doc.page_content, # The actual content of the document
|
191 |
+
"metadata": doc.metadata # The metadata (e.g., source, page number, etc.)
|
192 |
+
}
|
193 |
+
for doc in docs
|
194 |
+
]
|
195 |
+
state['context'] = context
|
196 |
+
print("Extracted context with metadata:", context) # Debugging: Print the extracted context
|
197 |
+
#print(f"Groundedness loop count: {state['groundedness_loop_count']}")
|
198 |
+
return state
|
199 |
+
|
200 |
+
|
201 |
+
|
202 |
+
def craft_response(state: Dict) -> Dict:
|
203 |
+
"""
|
204 |
+
Generates a response using the retrieved context, focusing on nutrition disorders.
|
205 |
+
|
206 |
+
Args:
|
207 |
+
state (Dict): The current state of the workflow, containing the query and retrieved context.
|
208 |
+
|
209 |
+
Returns:
|
210 |
+
Dict: The updated state with the generated response.
|
211 |
+
"""
|
212 |
+
system_message = '''You are a professional AI nutrition disorder specialist generating responses based on retrieved documents.
|
213 |
+
Your task is to use the given **context** to generate a highly accurate, informative, and user-friendly response.
|
214 |
+
|
215 |
+
Guidelines:
|
216 |
+
- **Be direct and concise** while ensuring completeness.
|
217 |
+
- **DO NOT include information that is not present in the context.**
|
218 |
+
- If multiple sources exist, synthesize them into a coherent response.
|
219 |
+
- If the context does not fully answer the query, state what additional information is needed.
|
220 |
+
- Use bullet points when explaining complex concepts.
|
221 |
+
|
222 |
+
Example:
|
223 |
+
User Query: "What are the symptoms of anorexia nervosa?"
|
224 |
+
Context:
|
225 |
+
1. Anorexia nervosa is characterized by extreme weight loss and fear of gaining weight.
|
226 |
+
2. Common symptoms include restricted eating, distorted body image, and excessive exercise.
|
227 |
+
Response:
|
228 |
+
"Anorexia nervosa is an eating disorder characterized by extreme weight loss and an intense fear of gaining weight. Common symptoms include:
|
229 |
+
- Restricted eating
|
230 |
+
- Distorted body image
|
231 |
+
- Excessive exercise
|
232 |
+
If you or someone you know is experiencing these symptoms, it is important to seek professional help."'''
|
233 |
+
|
234 |
+
response_prompt = ChatPromptTemplate.from_messages([
|
235 |
+
("system", system_message),
|
236 |
+
("user", "Query: {query}\nContext: {context}\n\nResponse:")
|
237 |
+
])
|
238 |
+
|
239 |
+
chain = response_prompt | llm | StrOutputParser()
|
240 |
+
state['response'] = chain.invoke({
|
241 |
+
"query": state['query'],
|
242 |
+
"context": "\n".join([doc["content"] for doc in state['context']]) # Extract content from each document
|
243 |
+
})
|
244 |
+
return state
|
245 |
+
|
246 |
+
|
247 |
+
|
248 |
+
def score_groundedness(state: Dict) -> Dict:
|
249 |
+
"""
|
250 |
+
Checks whether the response is grounded in the retrieved context.
|
251 |
+
|
252 |
+
Args:
|
253 |
+
state (Dict): The current state of the workflow, containing the response and context.
|
254 |
+
|
255 |
+
Returns:
|
256 |
+
Dict: The updated state with the groundedness score.
|
257 |
+
"""
|
258 |
+
print("---------check_groundedness---------")
|
259 |
+
system_message = '''You are an AI tasked with evaluating whether a response is grounded in the provided context and includes proper citations.
|
260 |
+
|
261 |
+
Guidelines:
|
262 |
+
1. **Groundedness Check**:
|
263 |
+
- Verify that the response accurately reflects the information in the context.
|
264 |
+
- Flag any unsupported claims or deviations from the context.
|
265 |
+
|
266 |
+
2. **Citation Check**:
|
267 |
+
- Ensure that the response includes citations to the source material (e.g., "According to [Source], ...").
|
268 |
+
- If citations are missing, suggest adding them.
|
269 |
+
|
270 |
+
3. **Scoring**:
|
271 |
+
- Assign a groundedness score between 0 and 1, where 1 means fully grounded and properly cited.
|
272 |
+
|
273 |
+
Examples:
|
274 |
+
1. Response: "Anorexia nervosa is caused by genetic factors (Source 1)."
|
275 |
+
Context: "Anorexia nervosa is influenced by genetic, environmental, and psychological factors (Source 1)."
|
276 |
+
Evaluation: "The response is grounded and properly cited. Groundedness score: 1.0."
|
277 |
+
|
278 |
+
2. Response: "Bulimia nervosa can be cured with diet alone."
|
279 |
+
Context: "Treatment for bulimia nervosa involves psychotherapy and medications (Source 2)."
|
280 |
+
Evaluation: "The response is ungrounded and lacks citations. Groundedness score: 0.2."
|
281 |
+
|
282 |
+
3. Response: "Anorexia nervosa has a high mortality rate."
|
283 |
+
Context: "Anorexia nervosa has one of the highest mortality rates among psychiatric disorders (Source 3)."
|
284 |
+
Evaluation: "The response is grounded but lacks a citation. Groundedness score: 0.7. ."
|
285 |
+
|
286 |
+
****Return only a float score (e.g., 0.9). Do not provide explanations.****
|
287 |
+
|
288 |
+
Now, evaluate the following response:
|
289 |
+
'''
|
290 |
+
|
291 |
+
groundedness_prompt = ChatPromptTemplate.from_messages([
|
292 |
+
("system", system_message),
|
293 |
+
("user", "Context: {context}\nResponse: {response}\n\nGroundedness score:")
|
294 |
+
])
|
295 |
+
|
296 |
+
chain = groundedness_prompt | llm | StrOutputParser()
|
297 |
+
groundedness_score = float(chain.invoke({
|
298 |
+
"context": "\n".join([doc["content"] for doc in state['context']]),
|
299 |
+
"response": state['response']
|
300 |
+
}))
|
301 |
+
print("groundedness_score: ",groundedness_score)
|
302 |
+
state['groundedness_loop_count'] +=1
|
303 |
+
print("#########Groundedness Incremented###########")
|
304 |
+
state['groundedness_score'] = groundedness_score
|
305 |
+
return state
|
306 |
+
|
307 |
+
|
308 |
+
|
309 |
+
def check_precision(state: Dict) -> Dict:
|
310 |
+
"""
|
311 |
+
Checks whether the response precisely addresses the user’s query.
|
312 |
+
|
313 |
+
Args:
|
314 |
+
state (Dict): The current state of the workflow, containing the query and response.
|
315 |
+
|
316 |
+
Returns:
|
317 |
+
Dict: The updated state with the precision score.
|
318 |
+
"""
|
319 |
+
print("---------check_precision---------")
|
320 |
+
system_message = '''You are an AI evaluator assessing the **precision** of the response.
|
321 |
+
Your task is to **score** how well the response addresses the user’s original nutrition disorder-related query.
|
322 |
+
|
323 |
+
Scoring Criteria:
|
324 |
+
- 1.0 → The response is fully precise, directly answering the question.
|
325 |
+
- 0.7 → The response is mostly correct but contains some generalization.
|
326 |
+
- 0.5 → The response is somewhat relevant but lacks key details.
|
327 |
+
- 0.3 → The response is vague or only partially correct.
|
328 |
+
- 0.0 → The response is incorrect or misleading.
|
329 |
+
|
330 |
+
Examples:
|
331 |
+
1. Query: "What are the symptoms of anorexia nervosa?"
|
332 |
+
Response: "The symptoms of anorexia nervosa include extreme weight loss, fear of gaining weight, and a distorted body image."
|
333 |
+
Precision Score: 1.0
|
334 |
+
|
335 |
+
2. Query: "How is bulimia nervosa treated?"
|
336 |
+
Response: "Bulimia nervosa is treated with therapy and medications."
|
337 |
+
Precision Score: 0.7
|
338 |
+
|
339 |
+
3. Query: "What causes binge eating disorder?"
|
340 |
+
Response: "Binge eating disorder is caused by a combination of genetic, psychological, and environmental factors."
|
341 |
+
Precision Score: 0.5
|
342 |
+
|
343 |
+
4. Query: "What are the effects of malnutrition?"
|
344 |
+
Response: "Malnutrition can lead to health problems."
|
345 |
+
Precision Score: 0.3
|
346 |
+
|
347 |
+
5. Query: "What is the mortality rate of anorexia nervosa?"
|
348 |
+
Response: "Anorexia nervosa is a type of eating disorder."
|
349 |
+
Precision Score: 0.0
|
350 |
+
|
351 |
+
*****Return only a float score (e.g., 0.9). Do not provide explanations.*****
|
352 |
+
Now, evaluate the following query and response:
|
353 |
+
'''
|
354 |
+
precision_prompt = ChatPromptTemplate.from_messages([
|
355 |
+
("system", system_message),
|
356 |
+
("user", "Query: {query}\nResponse: {response}\n\nPrecision score:")
|
357 |
+
])
|
358 |
+
|
359 |
+
chain = precision_prompt | llm | StrOutputParser()
|
360 |
+
precision_score = float(chain.invoke({
|
361 |
+
"query": state['query'],
|
362 |
+
"response": state['response']
|
363 |
+
}))
|
364 |
+
state['precision_score'] = precision_score
|
365 |
+
print("precision_score:", precision_score)
|
366 |
+
state['precision_loop_count'] +=1
|
367 |
+
print("#########Precision Incremented###########")
|
368 |
+
return state
|
369 |
+
|
370 |
+
|
371 |
+
|
372 |
+
def refine_response(state: Dict) -> Dict:
|
373 |
+
"""
|
374 |
+
Suggests improvements for the generated response.
|
375 |
+
|
376 |
+
Args:
|
377 |
+
state (Dict): The current state of the workflow, containing the query and response.
|
378 |
+
|
379 |
+
Returns:
|
380 |
+
Dict: The updated state with response refinement suggestions.
|
381 |
+
"""
|
382 |
+
print("---------refine_response---------")
|
383 |
+
|
384 |
+
system_message = '''You are an AI response refinement assistant. Your task is to suggest **improvements** for the given response.
|
385 |
+
|
386 |
+
### Guidelines:
|
387 |
+
- Identify **gaps in the explanation** (missing key details).
|
388 |
+
- Highlight **unclear or vague parts** that need elaboration.
|
389 |
+
- Suggest **additional details** that should be included for better accuracy.
|
390 |
+
- Ensure the refined response is **precise** and **grounded** in the retrieved context.
|
391 |
+
|
392 |
+
### Examples:
|
393 |
+
1. Query: "What are the symptoms of anorexia nervosa?"
|
394 |
+
Response: "The symptoms include weight loss and fear of gaining weight."
|
395 |
+
Suggestions: "The response is missing key details about behavioral and emotional symptoms. Add details like 'distorted body image' and 'restrictive eating patterns.'"
|
396 |
+
|
397 |
+
2. Query: "How is bulimia nervosa treated?"
|
398 |
+
Response: "Bulimia nervosa is treated with therapy."
|
399 |
+
Suggestions: "The response is too vague. Specify the types of therapy (e.g., cognitive-behavioral therapy) and mention other treatments like nutritional counseling and medications."
|
400 |
+
|
401 |
+
3. Query: "What causes binge eating disorder?"
|
402 |
+
Response: "Binge eating disorder is caused by psychological factors."
|
403 |
+
Suggestions: "The response is incomplete. Add details about genetic and environmental factors, and explain how they contribute to the disorder."
|
404 |
+
|
405 |
+
Now, suggest improvements for the following response:
|
406 |
+
'''
|
407 |
+
|
408 |
+
refine_response_prompt = ChatPromptTemplate.from_messages([
|
409 |
+
("system", system_message),
|
410 |
+
("user", "Query: {query}\nResponse: {response}\n\n"
|
411 |
+
"What improvements can be made to enhance accuracy and completeness?")
|
412 |
+
])
|
413 |
+
|
414 |
+
chain = refine_response_prompt | llm| StrOutputParser()
|
415 |
+
|
416 |
+
# Store response suggestions in a structured format
|
417 |
+
feedback = f"Previous Response: {state['response']}\nSuggestions: {chain.invoke({'query': state['query'], 'response': state['response']})}"
|
418 |
+
print("feedback: ", feedback)
|
419 |
+
print(f"State: {state}")
|
420 |
+
state['feedback'] = feedback
|
421 |
+
return state
|
422 |
+
|
423 |
+
|
424 |
+
|
425 |
+
def refine_query(state: Dict) -> Dict:
|
426 |
+
"""
|
427 |
+
Suggests improvements for the expanded query.
|
428 |
+
|
429 |
+
Args:
|
430 |
+
state (Dict): The current state of the workflow, containing the query and expanded query.
|
431 |
+
|
432 |
+
Returns:
|
433 |
+
Dict: The updated state with query refinement suggestions.
|
434 |
+
"""
|
435 |
+
print("---------refine_query---------")
|
436 |
+
system_message = '''You are an AI query refinement assistant. Your task is to suggest **improvements** for the expanded query.
|
437 |
+
|
438 |
+
### Guidelines:
|
439 |
+
- Add **specific keywords** to improve document retrieval.
|
440 |
+
- Identify **missing details** that should be included.
|
441 |
+
- Suggest **ways to narrow the scope** for better precision.
|
442 |
+
|
443 |
+
### Examples:
|
444 |
+
1. Original Query: "Tell me about eating disorders."
|
445 |
+
Expanded Query: "Provide details on eating disorders, including types, symptoms, causes, and treatment options."
|
446 |
+
Suggestions: "Add specific types of eating disorders like 'anorexia nervosa' and 'bulimia nervosa' to improve retrieval."
|
447 |
+
|
448 |
+
2. Original Query: "What is anorexia?"
|
449 |
+
Expanded Query: "Explain anorexia nervosa, including its symptoms and causes."
|
450 |
+
Suggestions: "Include details about treatment options and risk factors to make the query more comprehensive."
|
451 |
+
|
452 |
+
3. Original Query: "How to treat bulimia?"
|
453 |
+
Expanded Query: "Describe treatment options for bulimia nervosa."
|
454 |
+
Suggestions: "Specify types of treatments like 'cognitive-behavioral therapy' and 'medications' for better precision."
|
455 |
+
|
456 |
+
Now, suggest improvements for the following expanded query:
|
457 |
+
'''
|
458 |
+
|
459 |
+
refine_query_prompt = ChatPromptTemplate.from_messages([
|
460 |
+
("system", system_message),
|
461 |
+
("user", "Original Query: {query}\nExpanded Query: {expanded_query}\n\n"
|
462 |
+
"What improvements can be made for a better search?")
|
463 |
+
])
|
464 |
+
|
465 |
+
chain = refine_query_prompt | llm | StrOutputParser()
|
466 |
+
|
467 |
+
# Store refinement suggestions without modifying the original expanded query
|
468 |
+
query_feedback = f"Previous Expanded Query: {state['expanded_query']}\nSuggestions: {chain.invoke({'query': state['query'], 'expanded_query': state['expanded_query']})}"
|
469 |
+
print("query_feedback: ", query_feedback)
|
470 |
+
print(f"Groundedness loop count: {state['groundedness_loop_count']}")
|
471 |
+
state['query_feedback'] = query_feedback
|
472 |
+
return state
|
473 |
+
|
474 |
+
|
475 |
+
|
476 |
+
def should_continue_groundedness(state):
|
477 |
+
"""Decides if groundedness is sufficient or needs improvement."""
|
478 |
+
print("---------should_continue_groundedness---------")
|
479 |
+
print("groundedness loop count: ", state['groundedness_loop_count'])
|
480 |
+
if state['groundedness_score'] >= 0.4: # Threshold for groundedness
|
481 |
+
print("Moving to precision")
|
482 |
+
return "check_precision"
|
483 |
+
else:
|
484 |
+
if state["groundedness_loop_count"] > state['loop_max_iter']:
|
485 |
+
return "max_iterations_reached"
|
486 |
+
else:
|
487 |
+
print(f"---------Groundedness Score Threshold Not met. Refining Response-----------")
|
488 |
+
return "refine_response"
|
489 |
+
|
490 |
+
|
491 |
+
def should_continue_precision(state: Dict) -> str:
|
492 |
+
"""Decides if precision is sufficient or needs improvement."""
|
493 |
+
print("---------should_continue_precision---------")
|
494 |
+
print("precision loop count: ",state['precision_loop_count'])
|
495 |
+
if state['precision_score'] >= 0.7: # Threshold for precision
|
496 |
+
return "pass" # Complete the workflow
|
497 |
+
else:
|
498 |
+
if state['precision_loop_count'] > state['loop_max_iter']: # Maximum allowed loops
|
499 |
+
return "max_iterations_reached"
|
500 |
+
else:
|
501 |
+
print(f"---------Precision Score Threshold Not met. Refining Query-----------") # Debugging
|
502 |
+
# Exit the loop
|
503 |
+
return "refine_query" # Refine the query
|
504 |
+
|
505 |
+
|
506 |
+
|
507 |
+
def max_iterations_reached(state: Dict) -> Dict:
|
508 |
+
"""Handles the case when the maximum number of iterations is reached."""
|
509 |
+
print("---------max_iterations_reached---------")
|
510 |
+
"""Handles the case when the maximum number of iterations is reached."""
|
511 |
+
response = "I'm unable to refine the response further. Please provide more context or clarify your question."
|
512 |
+
state['response'] = response
|
513 |
+
return state
|
514 |
+
|
515 |
+
|
516 |
+
|
517 |
+
def create_workflow() -> StateGraph:
|
518 |
+
"""Creates the updated workflow for the AI nutrition agent."""
|
519 |
+
workflow = StateGraph(AgentState)
|
520 |
+
|
521 |
+
# Add processing nodes
|
522 |
+
workflow.add_node("expand_query", expand_query) # Step 1: Expand user query.
|
523 |
+
workflow.add_node("retrieve_context", retrieve_context) # Step 2: Retrieve relevant documents.
|
524 |
+
workflow.add_node("craft_response", craft_response) # Step 3: Generate a response based on retrieved data.
|
525 |
+
workflow.add_node("score_groundedness", score_groundedness) # Step 4: Evaluate response grounding.
|
526 |
+
workflow.add_node("refine_response", refine_response) # Step 5: Improve response if it's weakly grounded.
|
527 |
+
workflow.add_node("check_precision", check_precision) # Step 6: Evaluate response precision.
|
528 |
+
workflow.add_node("refine_query", refine_query) # Step 7: Improve query if response lacks precision.
|
529 |
+
workflow.add_node("max_iterations_reached", max_iterations_reached) # Step 8: Handle max iterations.
|
530 |
+
# workflow.add_node("groundedness_decider",groundedness_decider)
|
531 |
+
# Main flow edges
|
532 |
+
workflow.add_edge(START, "expand_query")
|
533 |
+
workflow.add_edge("expand_query", "retrieve_context")
|
534 |
+
workflow.add_edge("retrieve_context", "craft_response")
|
535 |
+
workflow.add_edge("craft_response", "score_groundedness")
|
536 |
+
# workflow.add_edge("score_groundedness","groundedness_decider")
|
537 |
+
|
538 |
+
|
539 |
+
# Conditional edges based on groundedness check
|
540 |
+
workflow.add_conditional_edges(
|
541 |
+
"score_groundedness",
|
542 |
+
should_continue_groundedness, # Use the conditional function
|
543 |
+
{
|
544 |
+
"check_precision": "check_precision", # If well-grounded, proceed to precision check.
|
545 |
+
"refine_response": "refine_response", # If not, refine the response.
|
546 |
+
"max_iterations_reached": "max_iterations_reached" # If max loops reached, exit.
|
547 |
+
}
|
548 |
+
)
|
549 |
+
workflow.add_edge("refine_response", "craft_response") # Refined responses are reprocessed.
|
550 |
+
|
551 |
+
# Conditional edges based on precision check
|
552 |
+
workflow.add_conditional_edges(
|
553 |
+
"check_precision",
|
554 |
+
should_continue_precision, # Use the conditional function
|
555 |
+
{
|
556 |
+
"pass": END, # If precise, complete the workflow.
|
557 |
+
"refine_query": "refine_query", # If imprecise, refine the query.
|
558 |
+
"max_iterations_reached": "max_iterations_reached" # If max loops reached, exit.
|
559 |
+
}
|
560 |
+
)
|
561 |
+
workflow.add_edge("refine_query", "expand_query") # Refined queries go through expansion again.
|
562 |
+
|
563 |
+
workflow.add_edge("max_iterations_reached", END)
|
564 |
+
# Set entry point
|
565 |
+
# workflow.set_entry_point("expand_query")
|
566 |
+
|
567 |
+
return workflow
|
568 |
+
|
569 |
+
|
570 |
+
|
571 |
+
#=========================== Defining the agentic rag tool ====================#
|
572 |
+
WORKFLOW_APP = create_workflow().compile()
|
573 |
+
@tool
|
574 |
+
def agentic_rag(query: str):
|
575 |
+
"""
|
576 |
+
Runs the RAG-based agent with conversation history for context-aware responses.
|
577 |
+
|
578 |
+
Args:
|
579 |
+
query (str): The current user query.
|
580 |
+
|
581 |
+
Returns:
|
582 |
+
Dict[str, Any]: The updated state with the generated response and conversation history.
|
583 |
+
"""
|
584 |
+
# Initialize state with necessary parameters
|
585 |
+
inputs = {
|
586 |
+
"query": query, # Current user query
|
587 |
+
"expanded_query": "", # Expanded version of the query
|
588 |
+
"context": [], # Retrieved documents (initially empty)
|
589 |
+
"response": "", # AI-generated response
|
590 |
+
"precision_score": 0.0, # Precision score of the response
|
591 |
+
"groundedness_score": 0.0, # Groundedness score of the response
|
592 |
+
"groundedness_loop_count": 0, # Counter for groundedness loops
|
593 |
+
"precision_loop_count": 0, # Counter for precision loops
|
594 |
+
"feedback": "",
|
595 |
+
"query_feedback":"",
|
596 |
+
"loop_max_iter":2
|
597 |
+
|
598 |
+
}
|
599 |
+
|
600 |
+
output = WORKFLOW_APP.invoke(inputs)
|
601 |
+
|
602 |
+
return output
|
603 |
+
|
604 |
+
|
605 |
+
#================================ Guardrails ===========================#
|
606 |
+
llama_guard_client = Groq(api_key=llama_api_key)
|
607 |
+
# Function to filter user input with Llama Guard
|
608 |
+
def filter_input_with_llama_guard(user_input, model="llama-guard-3-8b"):
|
609 |
+
"""
|
610 |
+
Filters user input using Llama Guard to ensure it is safe.
|
611 |
+
|
612 |
+
Parameters:
|
613 |
+
- user_input: The input provided by the user.
|
614 |
+
- model: The Llama Guard model to be used for filtering (default is "llama-guard-3-8b").
|
615 |
+
|
616 |
+
Returns:
|
617 |
+
- The filtered and safe input.
|
618 |
+
"""
|
619 |
+
try:
|
620 |
+
# Create a request to Llama Guard to filter the user input
|
621 |
+
response = llama_guard_client.chat.completions.create(
|
622 |
+
messages=[{"role": "user", "content": user_input}],
|
623 |
+
model=model,
|
624 |
+
)
|
625 |
+
# Return the filtered input
|
626 |
+
return response.choices[0].message.content.strip()
|
627 |
+
except Exception as e:
|
628 |
+
print(f"Error with Llama Guard: {e}")
|
629 |
+
return None
|
630 |
+
|
631 |
+
|
632 |
+
#============================= Adding Memory to the agent using mem0 ===============================#
|
633 |
+
|
634 |
+
class NutritionBot:
|
635 |
+
def __init__(self):
|
636 |
+
"""
|
637 |
+
Initialize the NutritionBot class, setting up memory, the LLM client, tools, and the agent executor.
|
638 |
+
"""
|
639 |
+
|
640 |
+
# Initialize a memory client to store and retrieve customer interactions
|
641 |
+
self.memory = MemoryClient(api_key=MEM0_api_key)
|
642 |
+
|
643 |
+
self.client = ChatOpenAI(
|
644 |
+
model_name="gpt-4o-mini", # Specify the model to use (e.g., GPT-4 optimized version)
|
645 |
+
api_key=config.get("API_KEY"), # API key for authentication
|
646 |
+
endpoint = config.get("OPENAI_API_BASE"),
|
647 |
+
temperature=0 # Controls randomness in responses; 0 ensures deterministic results
|
648 |
+
)
|
649 |
+
|
650 |
+
|
651 |
+
# Define tools available to the chatbot, such as web search
|
652 |
+
tools = [agentic_rag]
|
653 |
+
|
654 |
+
# Define the system prompt to set the behavior of the chatbot
|
655 |
+
system_prompt = """You are a caring and knowledgeable Medical Support Agent, specializing in nutrition disorder-related guidance. Your goal is to provide accurate, empathetic, and tailored nutritional recommendations while ensuring a seamless customer experience.
|
656 |
+
Guidelines for Interaction:
|
657 |
+
Maintain a polite, professional, and reassuring tone.
|
658 |
+
Show genuine empathy for customer concerns and health challenges.
|
659 |
+
Reference past interactions to provide personalized and consistent advice.
|
660 |
+
Engage with the customer by asking about their food preferences, dietary restrictions, and lifestyle before offering recommendations.
|
661 |
+
Ensure consistent and accurate information across conversations.
|
662 |
+
If any detail is unclear or missing, proactively ask for clarification.
|
663 |
+
Always use the agentic_rag tool to retrieve up-to-date and evidence-based nutrition insights.
|
664 |
+
Keep track of ongoing issues and follow-ups to ensure continuity in support.
|
665 |
+
Your primary goal is to help customers make informed nutrition decisions that align with their health conditions and personal preferences.
|
666 |
+
|
667 |
+
"""
|
668 |
+
|
669 |
+
# Build the prompt template for the agent
|
670 |
+
prompt = ChatPromptTemplate.from_messages([
|
671 |
+
("system", system_prompt), # System instructions
|
672 |
+
("human", "{input}"), # Placeholder for human input
|
673 |
+
("placeholder", "{agent_scratchpad}") # Placeholder for intermediate reasoning steps
|
674 |
+
])
|
675 |
+
|
676 |
+
# Create an agent capable of interacting with tools and executing tasks
|
677 |
+
agent = create_tool_calling_agent(self.client, tools, prompt)
|
678 |
+
|
679 |
+
# Wrap the agent in an executor to manage tool interactions and execution flow
|
680 |
+
self.agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
|
681 |
+
|
682 |
+
def store_customer_interaction(self, user_id: str, message: str, response: str, metadata: Dict = None):
|
683 |
+
"""
|
684 |
+
Store customer interaction in memory for future reference.
|
685 |
+
|
686 |
+
Args:
|
687 |
+
user_id (str): Unique identifier for the customer.
|
688 |
+
message (str): Customer's query or message.
|
689 |
+
response (str): Chatbot's response.
|
690 |
+
metadata (Dict, optional): Additional metadata for the interaction.
|
691 |
+
"""
|
692 |
+
if metadata is None:
|
693 |
+
metadata = {}
|
694 |
+
|
695 |
+
# Add a timestamp to the metadata for tracking purposes
|
696 |
+
metadata["timestamp"] = datetime.now().isoformat()
|
697 |
+
|
698 |
+
# Format the conversation for storage
|
699 |
+
conversation = [
|
700 |
+
{"role": "user", "content": message},
|
701 |
+
{"role": "assistant", "content": response}
|
702 |
+
]
|
703 |
+
|
704 |
+
# Store the interaction in the memory client
|
705 |
+
self.memory.add(
|
706 |
+
conversation,
|
707 |
+
user_id=user_id,
|
708 |
+
output_format="v1.1",
|
709 |
+
metadata=metadata
|
710 |
+
)
|
711 |
+
|
712 |
+
def get_relevant_history(self, user_id: str, query: str) -> List[Dict]:
|
713 |
+
"""
|
714 |
+
Retrieve past interactions relevant to the current query.
|
715 |
+
|
716 |
+
Args:
|
717 |
+
user_id (str): Unique identifier for the customer.
|
718 |
+
query (str): The customer's current query.
|
719 |
+
|
720 |
+
Returns:
|
721 |
+
List[Dict]: A list of relevant past interactions.
|
722 |
+
"""
|
723 |
+
return self.memory.search(
|
724 |
+
query=query, # Search for interactions related to the query
|
725 |
+
user_id=user_id, # Restrict search to the specific user
|
726 |
+
limit=5 # Retrieve up to 5 relevant interactions
|
727 |
+
)
|
728 |
+
|
729 |
+
def handle_customer_query(self, user_id: str, query: str) -> str:
|
730 |
+
"""
|
731 |
+
Process a customer's query and provide a response, taking into account past interactions.
|
732 |
+
|
733 |
+
Args:
|
734 |
+
user_id (str): Unique identifier for the customer.
|
735 |
+
query (str): Customer's query.
|
736 |
+
|
737 |
+
Returns:
|
738 |
+
str: Chatbot's response.
|
739 |
+
"""
|
740 |
+
|
741 |
+
# Retrieve relevant past interactions for context
|
742 |
+
relevant_history = self.get_relevant_history(user_id, query)
|
743 |
+
|
744 |
+
# Build a context string from the relevant history
|
745 |
+
context = "Previous relevant interactions:\n"
|
746 |
+
for memory in relevant_history:
|
747 |
+
context += f"Customer: {memory['memory']}\n" # Customer's past messages
|
748 |
+
context += f"Support: {memory['memory']}\n" # Chatbot's past responses
|
749 |
+
context += "---\n"
|
750 |
+
|
751 |
+
# Print context for debugging purposes
|
752 |
+
print("Context: ", context)
|
753 |
+
|
754 |
+
# Prepare a prompt combining past context and the current query
|
755 |
+
prompt = f"""
|
756 |
+
Context:
|
757 |
+
{context}
|
758 |
+
|
759 |
+
Current customer query: {query}
|
760 |
+
|
761 |
+
Provide a helpful response that takes into account any relevant past interactions.
|
762 |
+
"""
|
763 |
+
|
764 |
+
# Generate a response using the agent
|
765 |
+
response = self.agent_executor.invoke({"input": prompt})
|
766 |
+
|
767 |
+
# Store the current interaction for future reference
|
768 |
+
self.store_customer_interaction(
|
769 |
+
user_id=user_id,
|
770 |
+
message=query,
|
771 |
+
response=response["output"],
|
772 |
+
metadata={"type": "support_query"}
|
773 |
+
)
|
774 |
+
|
775 |
+
# Return the chatbot's response
|
776 |
+
return response['output']
|
777 |
+
|
778 |
+
|
779 |
+
#=====================User Interface using streamlit ===========================#
|
780 |
+
def nutrition_disorder_streamlit():
|
781 |
+
"""
|
782 |
+
A Streamlit-based UI for the Nutrition Disorder Specialist Agent.
|
783 |
+
"""
|
784 |
+
st.title("Nutrition Disorder Specialist")
|
785 |
+
st.write("Ask me anything about nutrition disorders, symptoms, causes, treatments, and more.")
|
786 |
+
st.write("Type 'exit' to end the conversation.")
|
787 |
+
|
788 |
+
# Initialize session state for chat history and user_id if they don't exist
|
789 |
+
if 'chat_history' not in st.session_state:
|
790 |
+
st.session_state.chat_history = []
|
791 |
+
if 'user_id' not in st.session_state:
|
792 |
+
st.session_state.user_id = None
|
793 |
+
|
794 |
+
# Login form: Only if user is not logged in
|
795 |
+
if st.session_state.user_id is None:
|
796 |
+
with st.form("login_form", clear_on_submit=True):
|
797 |
+
user_id = st.text_input("Please enter your name to begin:")
|
798 |
+
submit_button = st.form_submit_button("Login")
|
799 |
+
if submit_button and user_id:
|
800 |
+
st.session_state.user_id = user_id
|
801 |
+
st.session_state.chat_history.append({
|
802 |
+
"role": "assistant",
|
803 |
+
"content": f"Welcome, {user_id}! How can I help you with nutrition disorders today?"
|
804 |
+
})
|
805 |
+
st.session_state.login_submitted = True # Set flag to trigger rerun
|
806 |
+
|
807 |
+
# Trigger rerun outside the form if login was successful
|
808 |
+
if st.session_state.get("login_submitted", False):
|
809 |
+
st.session_state.pop("login_submitted")
|
810 |
+
st.rerun()
|
811 |
+
else:
|
812 |
+
# Display chat history
|
813 |
+
for message in st.session_state.chat_history:
|
814 |
+
with st.chat_message(message["role"]):
|
815 |
+
st.write(message["content"])
|
816 |
+
|
817 |
+
# Chat input
|
818 |
+
user_query = st.chat_input("Type your question here (or 'exit' to end)...")
|
819 |
+
|
820 |
+
if user_query:
|
821 |
+
# Check if user wants to exit
|
822 |
+
if user_query.lower() == "exit":
|
823 |
+
st.session_state.chat_history.append({"role": "user", "content": "exit"})
|
824 |
+
with st.chat_message("user"):
|
825 |
+
st.write("exit")
|
826 |
+
goodbye_msg = "Goodbye! Feel free to return if you have more questions about nutrition disorders."
|
827 |
+
st.session_state.chat_history.append({"role": "assistant", "content": goodbye_msg})
|
828 |
+
with st.chat_message("assistant"):
|
829 |
+
st.write(goodbye_msg)
|
830 |
+
st.session_state.user_id = None
|
831 |
+
st.rerun()
|
832 |
+
return
|
833 |
+
|
834 |
+
# Add user message to chat history
|
835 |
+
st.session_state.chat_history.append({"role": "user", "content": user_query})
|
836 |
+
with st.chat_message("user"):
|
837 |
+
st.write(user_query)
|
838 |
+
|
839 |
+
# Filter input
|
840 |
+
filtered_result = filter_input_with_llama_guard(user_query)
|
841 |
+
|
842 |
+
# Process through the agent
|
843 |
+
with st.chat_message("assistant"):
|
844 |
+
if filtered_result in ["safe", "unsafe S7", "unsafe S6"]:
|
845 |
+
try:
|
846 |
+
# Initialize chatbot if not already done
|
847 |
+
if 'chatbot' not in st.session_state:
|
848 |
+
st.session_state.chatbot = NutritionBot()
|
849 |
+
|
850 |
+
# Get response from the chatbot
|
851 |
+
response = st.session_state.chatbot.handle_customer_query(
|
852 |
+
st.session_state.user_id,
|
853 |
+
user_query
|
854 |
+
)
|
855 |
+
|
856 |
+
st.write(response)
|
857 |
+
st.session_state.chat_history.append({"role": "assistant", "content": response})
|
858 |
+
except Exception as e:
|
859 |
+
error_msg = f"Sorry, I encountered an error while processing your query. Please try again. Error: {str(e)}"
|
860 |
+
st.write(error_msg)
|
861 |
+
st.session_state.chat_history.append({"role": "assistant", "content": error_msg})
|
862 |
+
else:
|
863 |
+
inappropriate_msg = "I apologize, but I cannot process that input as it may be inappropriate. Please try again."
|
864 |
+
st.write(inappropriate_msg)
|
865 |
+
st.session_state.chat_history.append({"role": "assistant", "content": inappropriate_msg})
|
866 |
+
|
867 |
+
if __name__ == "__main__":
|
868 |
+
nutrition_disorder_streamlit()
|