File size: 6,337 Bytes
734777a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
### Example code 
from pinecone.grpc import PineconeGRPC as Pinecone
import os
import pandas as pd
import numpy as np
from pinecone import ServerlessSpec
from pinecone_text.sparse import BM25Encoder
import sys
sys.path.append('src/python')
import DataLoader

####### VERY MINIMAL NONSENSE DATA
data = {
    'id': ['vec1', 'vec2'],
    'values': [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4]],
    'metadata': [{'text': 'drama'}, {'text': 'action'}],
    'sparse_indices': [[10, 45, 16], [12, 34, 56]],
    'sparse_values': [[0.5, 0.5, 0.2], [0.3, 0.4, 0.1]]
}

pc.create_index(
  name="oc-hybrid-index",
  dimension=3,
  metric="dotproduct",
  spec=ServerlessSpec(
    cloud="aws",
    region="us-east-1"
  )
)

index = pc.index("oc-hybrid-index")

vecs = create_sparse_dense_dict(df)

index.upsert(vecs, namespace="example-namespace")

######################## Indicator Test Data

pc = Pinecone("5faec954-a6c5-4af5-a577-89dbd2e4e5b0")
pc.delete_index("oc-hybrid-index")

pc.create_index(
  name="oc-hybrid-index",
  dimension=1024,
  metric="dotproduct",
  spec=ServerlessSpec(
    cloud="aws",
    region="us-east-1"
  )
)

index = pc.Index("oc-hybrid-index")

## Upsert Indicator Test Data 
df = pd.read_csv('data/Indicator_Test.csv')
## get top three rows 
df = df.head(3)
# get text and MessageID
# Example usage
df = pd.read_csv('data/Indicator_Test.csv')
df = df.head(3)
bm25, newdf = create_sparse_embeds(df)
metadata = df[['text', 'label']].to_dict(orient='records')
newdf['metadata'] = metadata
vecs = create_sparse_dense_dict(newdf)
index.upsert(vecs, namespace="example-namespace")
## Query the hybrid index
querytext = "immigrants are invading the border"
queryembed = query_embed(pc, "multilingual-e5-large", querytext)
query_sparse_vector = bm25.encode_documents(querytext)

query_response = index.query(
    top_k=1,
    namespace="example-namespace",
    vector=queryembed,
    sparse_vector=query_sparse_vector,
    include_metadata=True
)


## Now create embeddings 
from pinecone import Pinecone
pc = Pinecone("5faec954-a6c5-4af5-a577-89dbd2e4e5b0")
model = "multilingual-e5-large"
DataLoader.chunk_and_embed(pc, model, df)
#df['Embeddings'] = [np.random.random(4) for x in range(len(df))]
# rename embeddings to values 
df.rename(columns={'Embeddings': 'values'}, inplace=True)
#df['id'] = [sqids.encode([i, i+1, i+2]) for i in range(len(df))]
## now, create metadata column to capture any column not including id, values, indices, and sparse_values
df['metadata'] = df.drop(columns=['id', 'values', 'indices', 'sparse_values']).to_dict(orient='records')
# only keep ids, values, metadata, indices, and sparse_values
df = df[['id', 'values', 'metadata', 'indices', 'sparse_values']]

vecs = create_sparse_dense_dict(df)

pc.create_index(
  name="oc-hybrid-indexv2",
  dimension=1024,
  metric="dotproduct",
  spec=ServerlessSpec(
    cloud="aws",
    region="us-east-1"
  )
)

index = pc.Index("oc-hybrid-indexv2")
index.upsert(vecs, namespace="example-namespace")

## QUERY 
query_response = index.query(
    top_k=10,
    vector=[0.1, 0.2, 0.3],
    sparse_vector={
        'indices': [10, 45, 16],
        'values':  [0.5, 0.5, 0.2]
    }
)

################
query = "test border patrol"
query_sparse_vector = encode_query(bm25, query)

query_response = index.query(
    top_k=1,
    namespace="example-namespace",
    vector=np.random.random(1024).tolist(),
    sparse_vector=query_sparse_vector
)
################
query = "ireland"
query_sparse_vector = encode_query(bm25, query)

query_response = index.query(
    top_k=1,
    namespace="example-namespace",
    vector=np.random.random(1024).tolist(),
    sparse_vector=query_sparse_vector
)


################## Function to create sparse and dense vectors
from tqdm.auto import tqdm

# Remove columns you dont want to encode
df = pd.read_csv('data/Indicator_Test.csv')
metadata = df

batch_size = 200

# convert all columns to string
metadata = metadata.astype(str)

#cols_to_remove = ['channelID', 'MessageID', 'AccountID', 'label', 'contexts', 'topics', 'weak topics', 'indicators']

for i in tqdm(range(0, len(df), batch_size)):
    # find end of batch
    i_end = min(i+batch_size, len(df))
    # extract metadata batch
    meta_batch = metadata.iloc[i:i_end]
    meta_dict = meta_batch.to_dict(orient="records")
    # concatenate all metadata field except for id and year to form a single string
    meta_batch = [" ".join(x) for x in meta_batch.loc[:, ~meta_batch.columns.isin(cols_to_remove)].values.tolist()]
    # extract image batch
    img_batch = images[i:i_end]
    # create sparse BM25 vectors
    sparse_embeds = bm25.encode_documents([text for text in meta_batch])
    # create dense vectors
    dense_embeds = model.encode(img_batch).tolist()
    # create unique IDs
    ids = [str(x) for x in range(i, i_end)]

    upserts = []
    # loop through the data and create dictionaries for uploading documents to pinecone index
    for _id, sparse, dense, meta in zip(ids, sparse_embeds, dense_embeds, meta_dict):
        upserts.append({
            'id': _id,
            'sparse_values': sparse,
            'values': dense,
            'metadata': meta
        })
    # upload the documents to the new hybrid index
    index.upsert(upserts)

# Create an upsert function for hybrid vectors
def upsert_hybrid_vectors(index, df, model, bm25, batch_size=200, cols_to_remove=['id', 'year']):
    metadata = df.remove_columns("image")

    for i in tqdm(range(0, len(df), batch_size)):
        i_end = min(i+batch_size, len(df))
        meta_batch = metadata.iloc[i:i_end]
        meta_dict = meta_batch.to_dict(orient="records")
        meta_batch = [" ".join(x) for x in meta_batch.loc[:, ~meta_batch.columns.isin(cols_to_remove)].values.tolist()]
        text_batch = df
        sparse_embeds = bm25.encode_documents([text for text in meta_batch])
        dense_embeds = model.encode(text_batch).tolist()
        ids = [str(x) for x in range(i, i_end)]

        upserts = []
        for _id, sparse, dense, meta in zip(ids, sparse_embeds, dense_embeds, meta_dict):
            upserts.append({
                'id': _id,
                'sparse_values': sparse,
                'values': dense,
                'metadata': meta
            })
        index.upsert(upserts)

# show index description after uploading the documents
index.describe_index_stats()