File size: 4,958 Bytes
48bb68b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
## Utility Functions
## Note: edit ~/.bigqueryrc to set global settings for bq command line tool
using CSV, DataFrames, JSON3
function read_json(file_path::String)
json_data = JSON3.read(open(file_path, "r"))
return json_data
end
"""
## ostreacultura_bq_auth()
- Activate the service account using the credentials file
"""
function ostreacultura_bq_auth()
if isfile("ostreacultura-credentials.json")
run(`gcloud auth activate-service-account --key-file=ostreacultura-credentials.json`)
else
println("Credentials file not found")
end
end
"""
## julia_to_bq_type(julia_type::DataType)
- Map Julia types to BigQuery types
Arguments:
- julia_type: The Julia data type to map
Returns:
- The corresponding BigQuery type as a string
"""
function julia_to_bq_type(julia_type::DataType)
if julia_type == String
return "STRING"
elseif julia_type == Int64
return "INTEGER"
elseif julia_type == Float64
return "FLOAT"
elseif julia_type <: AbstractArray{Float64}
return "FLOAT64"
elseif julia_type <: AbstractArray{Int64}
return "INTEGER"
else
return "STRING"
end
end
"""
## create_bq_schema(df::DataFrame)
- Create a BigQuery schema from a DataFrame
Arguments:
- df: The DataFrame to create the schema from
Returns:
- The schema as a string in BigQuery format
Example:
df = DataFrame(text = ["Alice", "Bob"], embed = [rand(3), rand(3)])
create_bq_schema(df)
"""
function create_bq_schema(df::DataFrame)
schema = []
for col in names(df)
if eltype(df[!, col]) <: AbstractArray
push!(schema, Dict("name" => col, "type" => "FLOAT64", "mode" => "REPEATED"))
else
push!(schema, Dict("name" => col, "type" => julia_to_bq_type(eltype(df[!, col])), "mode" => "NULLABLE"))
end
end
return JSON3.write(schema)
end
"""
## dataframe_to_json(df::DataFrame, file_path::String)
- Convert a DataFrame to JSON format and save to a file
Arguments:
- df: The DataFrame to convert
- file_path: The path where the JSON file should be saved
"""
function dataframe_to_json(df::DataFrame, file_path::String)
open(file_path, "w") do io
for row in eachrow(df)
JSON.print(io, Dict(col => row[col] for col in names(df)))
write(io, "\n")
end
end
end
"""
# Function to send a DataFrame to a BigQuery table
## send_to_bq_table(df::DataFrame, dataset_name::String, table_name::String)
- Send a DataFrame to a BigQuery table, which will append if the table already exists
Arguments:
- df: The DataFrame to upload
- dataset_name: The BigQuery dataset name
- table_name: The BigQuery table name
# Example usage
df = DataFrame(text = ["Alice", "Bob"], embed = [rand(3), rand(3)])
send_to_bq_table(df, "climate_truth", "embtest")
# Upload a DataFrame
using CSV, DataFrames
import OstreaCultura as OC
tdat = CSV.read("data/climate_test.csv", DataFrame)
emb = OC.multi_embeddings(tdat)
"""
function send_to_bq_table(df::DataFrame, dataset_name::String, table_name::String)
# Temporary JSON file
json_file_path = tempname() * ".json"
schema = create_bq_schema(df)
## Save schema to a file
schema_file_path = tempname() * ".json"
open(schema_file_path, "w") do io
write(io, schema)
end
# Save DataFrame to JSON
dataframe_to_json(df, json_file_path)
# Use bq command-line tool to load JSON to BigQuery table with specified schema
run(`bq load --source_format=NEWLINE_DELIMITED_JSON $dataset_name.$table_name $json_file_path $schema_file_path`)
# Clean up and remove the temporary JSON file after upload
rm(json_file_path)
rm(schema_file_path)
return nothing
end
"""
## bq(query::String)
- Run a BigQuery query and return the result as a DataFrame
Example: bq("SELECT * FROM ostreacultura.climate_truth.training LIMIT 10")
"""
function bq(query::String)
tname = tempname()
run(pipeline(`bq query --use_legacy_sql=false --format=csv $query`, tname))
return CSV.read(tname, DataFrame)
end
"""
## Function to average embeddings over some group
example:
avg_embeddings("ostreacultura.climate_truth.embtest", "text", "embed")
"""
function avg_embeddings(table::String, group::String, embedname::String)
query = """
SELECT
$group,
ARRAY(
SELECT AVG(value)
FROM UNNEST($embedname) AS value WITH OFFSET pos
GROUP BY pos
ORDER BY pos
) AS averaged_array
FROM (
SELECT $group, ARRAY_CONCAT_AGG($embedname) AS $embedname
FROM $table
GROUP BY $group
)
"""
return query
end
"""
## SAVE results of query to a CSV file
Example:
bq_csv("SELECT * FROM ostreacultura.climate_truth.training LIMIT 10", "data/test.csv")
"""
function bq_csv(query::String, path::String)
run(pipeline(`bq query --use_legacy_sql=false --format=csv $query`, path))
end
|